function were put in i386/i386/machdep.c from where it has been
cut and pasted to other architectures with only minor corruption.
Disklabel is really a MI format in many ways, at least it certainly
is when you operate on struct disklabel.
Put bounds_check_with_label() back in subr_disklabel.c where it belongs.
Sponsored by: DARPA & NAI Labs.
next step is to allow > 1 to be allocated per process. This would give
multi-processor threads. (when the rest of the infrastructure is
in place)
While doing this I noticed libkvm and sys/kern/kern_proc.c:fill_kinfo_proc
are diverging more than they should.. corrective action needed soon.
to userland in the signal handler that were not being iflled out before, but
should and can be.
This part of sendsig could be slightly refactored to use an MI interface, or
ideally, *sendsig*() would have an API change to accept a siginfo_t, which
would be filled out by an MI function in the level above sendsig, and said MI
function would make a small call into MD code to fill out the MD parts (some
of which may be bogus, such as the si_addr stuff in some places). This would
eventually make it possible for parts of the kernel sending signals to set up
a siginfo with meaningful information.
Reviewed by: mux
MFC after: 2 weeks
if compiling with I686_CPU as a target. CPU_DISABLE_SSE will prevent
this from happening and will guarantee the code is not compiled in.
I am still not happy with this, but gcc is now generating code that uses
these instructions if you set CPUTYPE to p3/p4 or athlon-4/mp/xp or higher.
in the original hardwired sysctl implementation.
The buf size calculator still overflows an integer on machines with large
KVA (eg: ia64) where the number of pages does not fit into an int. Use
'long' there.
Change Maxmem and physmem and related variables to 'long', mostly for
completeness. Machines are not likely to overflow 'int' pages in the
near term, but then again, 640K ought to be enough for anybody. This
comes for free on 32 bit machines, so why not?
environment needed at boot time to a dynamic subsystem when VM is
up. The dynamic kernel environment is protected by an sx lock.
This adds some new functions to manipulate the kernel environment :
freeenv(), setenv(), unsetenv() and testenv(). freeenv() has to be
called after every getenv() when you have finished using the string.
testenv() only tests if an environment variable is present, and
doesn't require a freeenv() call. setenv() and unsetenv() are self
explanatory.
The kenv(2) syscall exports these new functionalities to userland,
mainly for kenv(1).
Reviewed by: peter
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
they aren't in the usual path of execution for syscalls and traps.
The main complication for this is that we have to set flags to control
ast() everywhere that changes the signal mask.
Avoid locking in userret() in most of the remaining cases.
Submitted by: luoqi (first part only, long ago, reorganized by me)
Reminded by: dillon
various machdep.c's to being declared in kern_mutex.c.
- Add a new function mutex_init() used to perform early initialization
needed for mutexes such as setting up thread0's contested lock list
and initializing MI mutexes. Change the various MD startup routines
to call this function instead of duplicating all the code themselves.
Tested on: alpha, i386
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,
from old signal handlers. This is simpler and faster, and fixes (new)
sigreturn(2) when %eip in the new signal context happens to match the
magic value (0x1d516). 0x1d516 is below the default ELF text section,
so this probably never broken anything in practice.
locore.s:
In addition, don't build the signal trampoline for old signal handlers
when it is not used.
alpha:
Not fixed, but seems to be even less broken in practice due to more
advanced magic. A false match occurs for register #32 in mc_regs[].
Since there is no hardware register #32, a false match is only possible
for direct calls to sigreturn(2) that happen to have the magic number
in the spare mc_regs[32] field.
some arches and the syscall table is machine-independent. It was
(bogusly) conditional on COMPAT_43, so this usually makes no difference.
ia64: in addition:
- replace the bogus cloned comment before osigreturn() by a correct one.
osigreturn() is just a stub fo ia64's.
- fix the formatting of cloned comment before sigreturn().
- fix the return code. use nosys() instead of returning ENOSYS to get
the same semantics as if the syscall is not in the syscall table.
Generating SIGSYS is actually correct here.
- fix style bugs.
powerpc: copy the cleaned up ia64 stub. This mainly fixes a bogus comment.
sparc64: copy the cleaned up the ia64 stub, since there was no stub before.
traps on the first instruction of signal handlers.
In trap.c:syscall(), fake a trace trap if the single-step flag was set
on entry to the kernel, not if it will be set on exit from the kernel.
This fixes bogus trace traps after the last instruction of signal handlers.
gdb-4.18 (the version in FreeBSD) still has problems with the program in
the PR. These seem to be due to bugs in gdb and not in FreeBSD, and are
fixed in gdb-5.1 (the distribution version).
PR: 33262
Tested by: k Macy <kip_macy@yahoo.com>
MFC after: 1 day
- The MI portions of struct globaldata have been consolidated into a MI
struct pcpu. The MD per-CPU data are specified via a macro defined in
machine/pcpu.h. A macro was chosen over a struct mdpcpu so that the
interface would be cleaner (PCPU_GET(my_md_field) vs.
PCPU_GET(md.md_my_md_field)).
- All references to globaldata are changed to pcpu instead. In a UP kernel,
this data was stored as global variables which is where the original name
came from. In an SMP world this data is per-CPU and ideally private to each
CPU outside of the context of debuggers. This also included combining
machine/globaldata.h and machine/globals.h into machine/pcpu.h.
- The pointer to the thread using the FPU on i386 was renamed from
npxthread to fpcurthread to be identical with other architectures.
- Make the show pcpu ddb command MI with a MD callout to display MD
fields.
- The globaldata_register() function was renamed to pcpu_init() and now
init's MI fields of a struct pcpu in addition to registering it with
the internal array and list.
- A pcpu_destroy() function was added to remove a struct pcpu from the
internal array and list.
Tested on: alpha, i386
Reviewed by: peter, jake
The type of bus_space_tag_t is now a pointer to bus_space_tag structure,
and the bus_space_tag structure saves pointers to functions for direct
access and relocate access.
Added bsh_bam member to the bus_space_handle structure, it saves access
method either direct access or relocate access which is called by
bus_space_* functions.
Added the mecia device support. If the bs_da and bs_ra in bus tag are set
NEPC_io_space_tag and NEPC_mem_space_tag respectively, new bus_space stuff
changes the register of mecia automatically for 16bit access.
Obtained from: NetBSD/pc98
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
level implementation stuff out of machine/globaldata.h to avoid exposing
UPAGES to lots more places. The end result is that we can double
the kernel stack size with 'options UPAGES=4' etc.
This is mainly being done for the benefit of a MFC to RELENG_4 at some
point. -current doesn't really need this so much since each interrupt
runs on its own kstack.
are a really nasty interface that should have been killed long ago
when 'ptrace(PT_[SG]ETREGS' etc came along. The entity that they
operate on (struct user) will not be around much longer since it
is part-per-process and part-per-thread in a post-KSE world.
gdb does not actually use this except for the obscure 'info udot'
command which does a hexdump of as much of the child's 'struct user'
as it can get. It carries its own #defines so it doesn't break
compiles.
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
- Replace some very poorly thought out API hacks that should have been
fixed a long while ago.
- Provide some much more flexible search functions (resource_find_*())
- Use strings for storage instead of an outgrowth of the rather
inconvenient temporary ioconf table from config(). We already had a
fallback to using strings before malloc/vm was running anyway.
- pc98_getmemsize() function returns available memory size under 16MB.
- getmemsize() function is merged from PC-AT's one.
Submitted by: chi@bd.mbn.or.jp (Chiharu Shibata) and
NOKUBI Hirotaka <nokubi@ff.iij4u.or.jp>
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
depend on this. The linux ABI emulator tries to use it for some linux
binaries too. VM86 had a bigger cost than this and it was made default
a while ago.
Reviewed by: jhb, imp
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)