just use _foo() <-- foo(). In the case of a libpthread that doesn't do
call conversion (such as linuxthreads and our upcoming libpthread), this
is adequate. In the case of libc_r, we still need three names, which are
now _thread_sys_foo() <-- _foo() <-- foo().
Convert all internal libc usage of: aio_suspend(), close(), fsync(), msync(),
nanosleep(), open(), fcntl(), read(), and write() to _foo() instead of foo().
Remove all internal libc usage of: creat(), pause(), sleep(), system(),
tcdrain(), wait(), and waitpid().
Make thread cancellation fully POSIX-compliant.
Suggested by: deischen
eischen (Daniel Eischen) added wrappers to protect against cancled
threads orphaning internal resources.
the cancelability code is still a bit fuzzy but works for test
programs of my own, OpenBSD's and some examples from ORA's books.
add readdir_r to both libc and libc_r
add some 'const' attributes to function parameters
Reviewed by: eischen, jasone
line number every time a file descriptor is locked.
This looks like a big change but it isn't. It should reduce the size
of libc_r and make it run slightly faster.
for the process, not a separate set for each thread). By default, the
process now only has signal handlers installed for SIGVTALRM, SIGINFO
and SIGCHLD. The thread kernel signal handler is installed for other
signals on demand. This means that SIG_IGN and SIG_DFL processing is now
left to the kernel, not the thread kernel.
Change the signal dispatch to no longer use a signal thread, and
call the signal handler using the stack of the thread that has the
signal pending.
Change the atomic lock method to use test-and-set asm code with
a yield if blocked. This introduces separate locks for each type
of object instead of blocking signals to prevent a context
switch. It was this blocking of signals that caused the performance
degradation the people have noted.
This is a *big* change!