- struct plimit includes a mutex to protect a reference count. The plimit
structure is treated similarly to struct ucred in that is is always copy
on write, so having a reference to a structure is sufficient to read from
it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
limits from a process to keep the limit structure from changing out from
under you while reading from it.
- Various global limits that are ints are not protected by a lock since
int writes are atomic on all the archs we support and thus a lock
wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
either an rlimit, or the current or max individual limit of the specified
resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
(it didn't used the stackgap when it should have) but uses lim_rlimit()
and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits. It
also no longer uses the stackgap for accessing sysctl's for the
ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result,
ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.
Submitted by: mtm (mostly, I only did a few cleanups and catchups)
Tested on: i386
Compiled on: alpha, amd64
- Return NULL instead of returning memory outside of the stackgap
in stackgap_alloc() (FreeBSD-SA-00:42.linux)
- Check for stackgap_alloc() returning NULL in ibcs2_emul_find();
other calls to stackgap_alloc() have not been changed since they
are small fixed-size allocations.
- Replace use of strcpy() with strlcpy() in exec_coff_imgact()
to avoid buffer overflow
- Use strlcat() instead of strcat() to avoid a one byte buffer
overflow in ibcs2_setipdomainname()
- Use copyinstr() instead of copyin() in ibcs2_setipdomainname()
to ensure that the string is null-terminated
- Avoid integer overflow in ibcs2_setgroups() and ibcs2_setgroups()
by checking that gidsetsize argument is non-negative and
no larger than NGROUPS_MAX.
- Range-check signal numbers in ibcs2_wait(), ibcs2_sigaction(),
ibcs2_sigsys() and ibcs2_kill() to avoid accessing array past
the end (or before the start)
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
contain the filedescriptor number on opens from userland.
The index is used rather than a "struct file *" since it conveys a bit
more information, which may be useful to in particular fdescfs and /dev/fd/*
For now pass -1 all over the place.
Several of the subtypes have an associated vnode which is used for
stuff like the f*() functions.
By giving the vnode a speparate field, a number of checks for the specific
subtype can be replaced simply with a check for f_vnode != NULL, and
we can later free f_data up to subtype specific use.
At this point in time, f_data still points to the vnode, so any code I
might have overlooked will still work.
kern_sigprocmask() in the various binary compatibility emulators.
- Replace calls to sigsuspend(), sigaltstack(), sigaction(), and
sigprocmask() that used the stackgap with calls to the corresponding
kern_sig*() functions instead without using the stackgap.
a follow on commit to kern_sig.c
- signotify() now operates on a thread since unmasked pending signals are
stored in the thread.
- PS_NEEDSIGCHK moves to TDF_NEEDSIGCHK.
prevent the compiler from optimizing assignments into byte-copy
operations which might make access to the individual fields non-atomic.
Use the individual fields throughout, and don't bother locking them with
Giant: it is no longer needed.
Inspired by: tjr
pointer types, and remove a huge number of casts from code using it.
Change struct xfile xf_data to xun_data (ABI is still compatible).
If we need to add a #define for f_data and xf_data we can, but I don't
think it will be necessary. There are no operational changes in this
commit.
on a process's pending signals, use the signal queue flattener,
ksiginfo_to_sigset_t, on the process, and on a local sigset_t, and then work
with that as needed.
constants VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS, USRSTACK and PS_STRINGS.
This is mainly so that they can be variable even for the native abi, based
on different machine types. Get stack protections from the sysentvec too.
This makes it trivial to map the stack non-executable for certain abis, on
machines that support it.
in their library (STYP_LIB) section.
- Attempt to make the code which calculates the next entry and
string offsets look clearer.
PR: kern/42580
Tested by: Olaf Klein <ok@adimus.de> (on 4.7-PRERELEASE)
sysentvec. Initialized all fields of all sysentvecs, which will allow
them to be used instead of constants in more places. Provided stack
fixup routines for emulations that previously used the default.
accept an 'active_cred' argument reflecting the credential of the thread
initiating the ioctl operation.
- Change fo_ioctl() to accept active_cred; change consumers of the
fo_ioctl() interface to generally pass active_cred from td->td_ucred.
- In fifofs, initialize filetmp.f_cred to ap->a_cred so that the
invocations of soo_ioctl() are provided access to the calling f_cred.
Pass ap->a_td->td_ucred as the active_cred, but note that this is
required because we don't yet distinguish file_cred and active_cred
in invoking VOP's.
- Update kqueue_ioctl() for its new argument.
- Update pipe_ioctl() for its new argument, pass active_cred rather
than td_ucred to MAC for authorization.
- Update soo_ioctl() for its new argument.
- Update vn_ioctl() for its new argument, use active_cred rather than
td->td_ucred to authorize VOP_IOCTL() and the associated VOP_GETATTR().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
access control: as with SVR4, very few changes required since almost
all services are implemented by wrapping existing native FreeBSD
system calls. Only readdir() calls need additional instrumentation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
they aren't in the usual path of execution for syscalls and traps.
The main complication for this is that we have to set flags to control
ast() everywhere that changes the signal mask.
Avoid locking in userret() in most of the remaining cases.
Submitted by: luoqi (first part only, long ago, reorganized by me)
Reminded by: dillon
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@