This function is called for each device for which no driver
was found.
Output is similar to the eisa_probe_nomatch() function but with the
added benefit of displaying the assigned IRQ (since PCI gives us
this information up front.)
Output is like so:
pci0: unknown card CPQ0508 (vendor=0x0e11, dev=0x0508) at 11.0 irq 9
pci0: unknown card DFZ0508 (vendor=0x10da, dev=0x0508) at 11.0 irq 9
pci0: unknown card DBL0508 (vendor=0x104c, dev=0x0508) at 11.0 irq 9
pci0: unknown card DDM0011 (vendor=0x108d, dev=0x0011) at 11.0 irq 9
I'm not happy with the 3 lines of macro cruft that got added but
I consider it a temporary annoyance as those bits will be moved to
some place where PCI, EISA and ISAPNP code will be able to use them.
(Not surprisingly, this message is longer than the code in question.)
Reviewed by: peter, dfr
via an IBM PCI-PCI bridge (82351 or 82352 or 82353)
The driver must identify if it is on a secondary PCI bus, which is
created via the IBM PCI-PCI bridge. If it is, then it must initialise
the IBM PCI-PCI bridge correctly.
To do this, the following new functions are added.
Because they use the pcici_t tag, they are considered 2.2 compatibility APIs
pcici_t * pci_get_parent_from_tag(pcici_t tag);
int pci_get_bus_from_tag(pcici_t tag);
(The _from_tag suffix is used to prevent clashes with similarly named
newbus PCI API functions)
Submitted by: Anton Berezin <tobez@plab.ku.dk>
Reviewed by: Doug Rabson <dfr@nlsystems.com>
Reworked by: Me (roger)
The cdevsw_add() function now finds the major number(s) in the
struct cdevsw passed to it. cdevsw_add_generic() is no longer
needed, cdevsw_add() does the same thing.
cdevsw_add() will print an message if the d_maj field looks bogus.
Remove nblkdev and nchrdev variables. Most places they were used
bogusly. Instead check a dev_t for validity by seeing if devsw()
or bdevsw() returns NULL.
Move bdevsw() and devsw() functions to kern/kern_conf.c
Bump __FreeBSD_version to 400006
This commit removes:
72 bogus makedev() calls
26 bogus SYSINIT functions
if_xe.c bogusly accessed cdevsw[], author/maintainer please fix.
I4b and vinum not changed. Patches emailed to authors. LINT
probably broken until they catch up.
Reformat and initialize correctly all "struct cdevsw".
Initialize the d_maj and d_bmaj fields.
The d_reset field was not removed, although it is never used.
I used a program to do most of this, so all the files now use the
same consistent format. Please keep it that way.
Vinum and i4b not modified, patches emailed to respective authors.
The specific intent of this commit is to pave the way for importing
Compaq XP1000 support. These changes should not affect the i386 port.
Reviewed by: Doug Rabson <dfr@nlsystems.com>
(actually, he walked me through most of it & deserves more than reviewd-by
credit )
style pci drivers with a simple one-line change to use a module that
registers itself under new-bus and should in theory enable just about all
of the pci drivers to be loadable (kldload and loader(8)) but without
having the impact of converting the APIs yet.
This also fixes the problem of having undefined variables when only
new-style pci drivers are present.
i386 platform boots, it is no longer ISA-centric, and is fully dynamic.
Most old drivers compile and run without modification via 'compatability
shims' to enable a smoother transition. eisa, isapnp and pccard* are
not yet using the new resource manager. Once fully converted, all drivers
will be loadable, including PCI and ISA.
(Some other changes appear to have snuck in, including a port of Soren's
ATA driver to the Alpha. Soren, back this out if you need to.)
This is a checkpoint of work-in-progress, but is quite functional.
The bulk of the work was done over the last few years by Doug Rabson and
Garrett Wollman.
Approved by: core
The previous code just ignored the invalid map register, but this gave
surprising results because of the way pci_map_port() associated the map
register offset supplied with a map entry in the map array.
base register that controls Ultra-DMA, so we need to examine all possible
base registers instead of just giving up at the first empty one.
Also, looking at the source code to the BIOS, I see that they are also
checking for 0xffffffff as an invalid value so do the same. Stefan may like
to clean this up, but at least now I can find my PCI IDE registers.
and use this when masking/unmasking interrupts.
Maintain a mapping from (iopaic number, int pin) tuple to irq number,
and use this when configuring devices and programming the ioapics.
Previous code assumed that irq number was equal to int pin number, and
that the ioapic number was 0.
Don't let an AP enter _cpu_switch before all local apics are initialized.
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.
The prototype FreeBSD/alpha machdep will follow in a couple of days
time.
- Attempt to handle PCI devices where the interrupt is
an ISA/EISA interrupt according to the mp table.
- Attempt to handle multiple IO APIC pins connected to
the same PCI or ISA/EISA interrupt source. Print a
warning if this happens, since performance is suboptimal.
This workaround is only used for PCI devices.
With these two workarounds, the -SMP kernel is capable of running on
my Asus P/I-P65UP5 motherboard when version 1.4 of the MP table is disabled.
This introduce an xxxFS_BOOT for each of the rootable filesystems.
(Presently not required, but encouraged to allow a smooth move of option *FS
to opt_dontuse.h later.)
LFS is temporarily disabled, and will be re-enabled tomorrow.
device probe of a host to PCI bridge may modify that value, based on
its knowledge of device specific registers. This makes the Intel XXpress
work, as verified by: Terje Marthinussen <terjem@cc.uit.no>.
1) Stop at the first map register that contains a zero value.
2) When testing for the map size work up from low values, since
this works around a bug in some BusLogic SCSI card, which has
the 16 upper port base address bits hardwired to zero.
The config register dump printed in the bootverbose case has
been slightly rearranged.
reality. There will be a new call interface, but for now the file
pci_compat.c (which is to be deleted, after all drivers are converted)
provides an emulation of the old PCI bus driver functions. The only
change that might be visible to drivers is, that the type pcici_t
(which had been meant to be just a handle, whose exact definition
should not be relied on), has been converted into a pcicfgregs* .
The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t
and has been converted to just call the PCI drivers functions to access
configuration space register, instead of inventing its own ...
This code is by no means complete, but assumed to be fully operational,
and brings the official code base more in line with my development code.
A new generic device descriptor data type has to be agreed on. The PCI
code will then use that data type to provide new functionality:
1) userconfig support
2) "wired" PCI devices
3) conflicts checking against ISA/EISA
4) maps will depend on the command register enable bits
5) PCI to Anything bridges can be defined as devices,
and are probed like any "standard" PCI device.
The following features are currently missing, but will be added back,
soon:
1) unknown device probe message
2) suppression of "mirrored" devices caused by ancient, broken chip-sets
This code relies on generic shared interrupt support just commited to
kern_intr.c (plus the modifications of isa.c and isa_device.h).
There are various options documented in i386/conf/LINT, there is more to
come over the next few days.
The kernel should run pretty much "as before" without the options to
activate SMP mode.
There are a handful of known "loose ends" that need to be fixed, but
have been put off since the SMP kernel is in a moderately good condition
at the moment.
This commit is the result of the tinkering and testing over the last 14
months by many people. A special thanks to Steve Passe for implementing
the APIC code!
This parameter is intended to allow new kernels to work with old LKM binaries,
provided the revision ID is incremented whenever the PCI LKM interface is
changed. The revision ID does not at all protect against changes in data
structures accesses by the driver.