That's EVERY SINGLE driver that has an entry in conf.c..
my next trick will be to define cdevsw[] and bdevsw[]
as empty arrays and remove all those DAMNED defines as well..
Each of these drivers has a SYSINIT linker set entry
that comes in very early.. and asks teh driver to add it's own
entry to the two devsw[] tables.
some slight reworking of the commits from yesterday (added the SYSINIT
stuff and some usually wrong but token DEVFS entries to all these
devices.
BTW does anyone know where the 'ata' entries in conf.c actually reside?
seems we don't actually have a 'ataopen() etc...
If you want to add a new device in conf.c
please make sure I know
so I can keep it up to date too..
as before, this is all dependent on #if defined(JREMOD)
(and #ifdef DEVFS in parts)
totally dynamic.
this is only the devices in i386/isa
I'll do more tomorrow.
they're completely masked by #ifdef JREMOD at this stage...
the eventual aim is that every driver will do a SYSINIT
at startup BEFORE the probes, which will effectively
link it into the devsw tables etc.
If I'd thought about it more I'd have put that in in this set (damn)
The ioconf lines generated by config will also end up in the
device's own scope as well, so ioconf.c will eventually be gutted
the SYSINIT call to the driver will include a phase where the
driver links it's ioconf line into a chain of such. when this phase is done
then the user can modify them with the boot: -c
config menu if he wants, just like now..
config will put the config lines out in the .h file
(e.g. in aha.h will be the addresses for the aha driver to look.)
as I said this is a very small first step..
the aim of THIS set of edits is to not have to edit conf.c at all when
adding a new device.. the tabe will be a simple skeleton..
when this is done, it will allow other changes to be made,
all teh time still having a fully working kernel tree,
but the logical outcome is the complete REMOVAL of the devsw tables.
By the end of this, linked in drivers will be exactly the same as
run-time loaded drivers, except they JUST HAPPEN to already be linked
and present at startup..
the SYSINIT calls will be the equivalent of the "init" call
made to a newly loaded driver in every respect.
For this edit,
each of the files has the following code inserted into it:
obviously, tailored to suit..
----------------------somewhere at the top:
#ifdef JREMOD
#include <sys/conf.h>
#define CDEV_MAJOR 13
#define BDEV_MAJOR 4
static void sd_devsw_install();
#endif /*JREMOD */
---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT
#ifdef JREMOD
sd_devsw_install();
#endif /*JREMOD*/
-----------------------at the bottom:
#ifdef JREMOD
struct bdevsw sd_bdevsw =
{ sdopen, sdclose, sdstrategy, sdioctl, /*4*/
sddump, sdsize, 0 };
struct cdevsw sd_cdevsw =
{ sdopen, sdclose, rawread, rawwrite, /*13*/
sdioctl, nostop, nullreset, nodevtotty,/* sd */
seltrue, nommap, sdstrategy };
static sd_devsw_installed = 0;
static void sd_devsw_install()
{
dev_t descript;
if( ! sd_devsw_installed ) {
descript = makedev(CDEV_MAJOR,0);
cdevsw_add(&descript,&sd_cdevsw,NULL);
#if defined(BDEV_MAJOR)
descript = makedev(BDEV_MAJOR,0);
bdevsw_add(&descript,&sd_bdevsw,NULL);
#endif /*BDEV_MAJOR*/
sd_devsw_installed = 1;
}
}
#endif /* JREMOD */
misplaced extern declarations (mostly prototypes of interrupt handlers)
that this exposed. The prototypes should be moved back to the driver
sources when the functions are staticalized.
Added idempotency guards to <machine/conf.h>. "ioconf.h" can't be
included when building LKMs so define a wart in bsd.kmod.mk to help
guard against including it.
to <machine/conf.h>. conf.h was mechanically generated by
`grep ^d_ conf.c >conf.h'. This accounts for part of its ugliness. The
prototypes should be moved back to the driver sources when the functions
are staticalized.
Use input buffer watermarks of TTYHOG-512 (high) and (high)*7/8
(low) instead of TTYHOG/2 (high) and TTYHOG/5 (low) to agree with
some drivers. 512 is magic and some things depended on TTYHOG/2
>= TTYHOG-512 to work; now they depend on the 512 magic not changing
and TTYHOG-512 being significantly larger than 0. This should be
handled in ttsetwater().
Separate the decision about whether to do input flow control from
doing it. ttyblock() now just starts input flow control (hardware
and/or software) and there is a new function ttyunblock() to stop
it. The decisions are the same except for the watermark changes
and allowing for input expansion for PARMRK.
When flushing input, try harder at first to send a start character
if required, but give up if the first attempt fails.
cy.c, rc.c, sio.c:
Simplify: let ttyinput() handle input flow control if it is not
being bypassed. Use ttyblock() to start flow control otherwise.
rc.c:
Use same input flow control test as elsewhere: test in a more
efficient order and start flow control at >= highwater instead of
at > highwater.
essential when I fix excessive wakeups for output-below-low-water.
In cy.c and sio.c, wake up via the driver start routine to also
eliminate duplicated code involving the clearing of TS_TTSTOP.
Always (except in code to be replaced soon) call driver start
routine directly instead of going through ttstart().
ttwwakeup(). The conditions for doing the wakeup will soon become
more complicated and I don't want them duplicated in all drivers.
It's probably not worth making ttwwakeup() a macro or an inline
function. The cost of the function call is relatively small when
there is a process to wake up. There is usually a process to wake
up for large writes and the system call overhead dwarfs the function
call overhead for small writes.