This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
<netinet/tcp_fsm.h> is included into any compilation unit that needs
tcpstates[]. Also remove incorrect extern declarations and TCPDEBUG
conditionals. This allows kernels both with and without TCPDEBUG to
build, and unbreaks the tinderbox.
Approved by: re (rwatson)
tunnels, and was not MPSAFE. The code can be easily restored in the
event that someone with an IPX over IP tunnel configuration can work
with me to test patches.
This removes one of five remaining consumers of NET_NEEDS_GIANT.
Approved by: re (kensmith)
protocol entry points using functions named proto_getsockaddr and
proto_getpeeraddr rather than proto_setsockaddr and proto_setpeeraddr.
While it's true that sockaddrs are allocated and set, the net effect is
to retrieve (get) the socket address or peer address from a socket, not
set it, so align names to that intent.
specific privilege names to a broad range of privileges. These may
require some future tweaking.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
function, pru_close, to notify protocols that the file descriptor or
other consumer of a socket is closing the socket. pru_abort is now a
notification of close also, and no longer detaches. pru_detach is no
longer used to notify of close, and will be called during socket
tear-down by sofree() when all references to a socket evaporate after
an earlier call to abort or close the socket. This means detach is now
an unconditional teardown of a socket, whereas previously sockets could
persist after detach of the protocol retained a reference.
This faciliates sharing mutexes between layers of the network stack as
the mutex is required during the checking and removal of references at
the head of sofree(). With this change, pru_detach can now assume that
the mutex will no longer be required by the socket layer after
completion, whereas before this was not necessarily true.
Reviewed by: gnn
rather than an error. Detaches do not "fail", they other occur or
the protocol flags SS_PROTOREF to take ownership of the socket.
soclose() no longer looks at so_pcb to see if it's NULL, relying
entirely on the protocol to decide whether it's time to free the
socket or not using SS_PROTOREF. so_pcb is now entirely owned and
managed by the protocol code. Likewise, no longer test so_pcb in
other socket functions, such as soreceive(), which have no business
digging into protocol internals.
Protocol detach routines no longer try to free the socket on detach,
this is performed in the socket code if the protocol permits it.
In rts_detach(), no longer test for rp != NULL in detach, and
likewise in other protocols that don't permit a NULL so_pcb, reduce
the incidence of testing for it during detach.
netinet and netinet6 are not fully updated to this change, which
will be in an upcoming commit. In their current state they may leak
memory or panic.
MFC after: 3 months
than an int, as an error here is not meaningful. Modify soabort() to
unconditionally free the socket on the return of pru_abort(), and
modify most protocols to no longer conditionally free the socket,
since the caller will do this.
This commit likely leaves parts of netinet and netinet6 in a situation
where they may panic or leak memory, as they have not are not fully
updated by this commit. This will be corrected shortly in followup
commits to these components.
MFC after: 3 months
ipxpcb mutex. Contrary to the comment, even in 4.x this was unsafe,
as parallel use of the socket by another process would result in pcb
corruption if the mbuf allocation slept.
MFC after: 1 month
IPXP_DROPPED before continuing, and return EINVAL or ECONNRESET if
it is flagged. It's unclear why each situation should be one or
the other, but it is copied from netinet which has the same bugs.
MFC after: 1 month
as belonging to SPX. This replaces the implicit assumption that the cb
pointer for non-SPX pcb's will be NULL. This isn't required in TCP/IP
as different pcb lists are maintained for different IP protocols; IPX
stores all pcbs on the same global ipxpcb_list.
Foot provided by: gnn
MFC after: 1 month
- Introduce invariant that all IPX/SPX sockets will have valid so_pcb
pointers to ipxpcb structures, and that for SPX, the control block
pointer will always be valid. Don't attempt to free the socket or
pcb at various odd points, such as disconnect.
- Add a new ipxpcb flag, IPXP_DROPPED, which will be set in place of
freeing PCB's so that this invariant can be maintained. This flag
is now checked instead of a NULL check in various socket protocol
calls.
- Introduce many assertions that this invariant holds.
- Various pieces of code, such as the SPX timer code, no longer needs
to jump through hoops in case it frees a PCB while running.
- Break out ipx_pcbfree() from ipx_pcbdetach(). Likewise
spx_pcbdetach().
- Comment on some SMP-related limitations to the SPX code.
- Update copyrights.
MFC after: 1 month
of its allocations fails. Allocate the ipxp last so as to avoid having
to free it if another allocation goes wrong.
Normalize retrieval of ipxp and cb from socket in spx_sp_attach(), and
add assertions.
MFC after: 1 month
especially reads of spx header structures, which will now be cached
in the stack until they can be copied out after releasing the lock.
Panic if a bad socket option direction is passed in by the caller.
MFC after: 1 month
being committed:
- Wrap comments more evenly on right border.
- Clean up braces.
Also, along similar lines:
- Assert some pointers are non-NULL before dereferencing them.
- Remove one assertion that looks, on face value, poor.
MFC after: 1 month
with Giant, as there is current unsafety in the IPX tunneled over IP
code. There have been no reports of trouble, but there probably would
be if anyone were running this code at high speed on SMP systems.
MFC after: 3 days
variable on the spx_input() stack. It's not very large, and this will
avoid parallelism issues when spx_input() runs in more than one thread at
a time.
MFC after: 1 month
ipxpcb is NULL or not: in attach it will be, and on detach it won't be.
If for any reason these invariants don't hold true, panicking is a good
idea.
Noticed by: Coverity Prevent analysis tool
MFC after: 3 days
are the contents of the forwarded mbuf ever copied into mcopy, so there's
no need to have mcopy, conditionally look at mcopy, or conditionally free
it.
Noticed by: Coverity Prevent analysis tool
MFC after: 3 days
Having an additional MT_HEADER mbuf type is superfluous and redundant
as nothing depends on it. It only adds a layer of confusion. The
distinction between header mbuf's and data mbuf's is solely done
through the m->m_flags M_PKTHDR flag.
Non-native code is not changed in this commit. For compatibility
MT_HEADER is mapped to MT_DATA.
Sponsored by: TCP/IP Optimization Fundraise 2005
following the protocol pru_listen() call to solisten_proto(), so
that it occurs under the socket lock acquisition that also sets
SO_ACCEPTCONN. This requires passing the new backlog parameter
to the protocol, which also allows the protocol to be aware of
changes in queue limit should it wish to do something about the
new queue limit. This continues a move towards the socket layer
acting as a library for the protocol.
Bump __FreeBSD_version due to a change in the in-kernel protocol
interface. This change has been tested with IPv4 and UNIX domain
sockets, but not other protocols.
struct ifnet or the layer 2 common structure it was embedded in have
been replaced with a struct ifnet pointer to be filled by a call to the
new function, if_alloc(). The layer 2 common structure is also allocated
via if_alloc() based on the interface type. It is hung off the new
struct ifnet member, if_l2com.
This change removes the size of these structures from the kernel ABI and
will allow us to better manage them as interfaces come and go.
Other changes of note:
- Struct arpcom is no longer referenced in normal interface code.
Instead the Ethernet address is accessed via the IFP2ENADDR() macro.
To enforce this ac_enaddr has been renamed to _ac_enaddr.
- The second argument to ether_ifattach is now always the mac address
from driver private storage rather than sometimes being ac_enaddr.
Reviewed by: sobomax, sam