cluster allocator, that wasn't MPSAFE. Instead, utilize our new generic
UMA jumbo cluster allocator. Since UMA gives us a 9k piece that is contigous
in virtual memory, but isn't contigous in physical memory we need to handle
a few segments. To deal with this we utilize Tigon chip feature - extended
RX descriptors, that can handle up to four DMA segments for one frame.
Details:
o Remove bge_alloc_jumbo_mem(), bge_free_jumbo_mem(),
bge_jalloc(), bge_jfree() functions.
o Remove SLIST heads, bge_jumbo_tag, bge_jumbo_map from softc.
o Use extended RX BDs for Jumbo receive producer ring, and
initialize it appropriately.
o New bge_newbuf_jumbo():
- Allocate an mbuf with Jumbo cluster with help of m_cljget().
- Load the cluster for DMA with help of bus_dmamap_load_mbuf_sg().
- Assert that we got 3 segments in the DMA mapping.
- Fill in these 3 segments into the extended RX descriptor.
2) rework link state detection code & use it in POLLING mode
3) fix 2 bugs in link state detection code:
a) driver unable to detect link loss on bcm5721
b) on bcm570x chips (tested on bcm5700 bcm5701 bcm5702) driver fails
to detect link loss with probability 1/6 (solved in brgphy.c)
Devices working in TBI mode should not be affected by this change.
Approved by: glebius (mentor)
MFC after: 1 month
4k clusters in addition to 9k and 16k ones.
struct mbuf *m_getjcl(int how, short type, int flags, int size)
void *m_cljget(struct mbuf *m, int how, int size)
m_getjcl() returns an mbuf with a cluster of the specified size attached
like m_getcl() does for 2k clusters.
m_cljget() is different from m_clget() as it can allocate clusters
without attaching them to an mbuf. In that case the return value
is the pointer to the cluster of the requested size. If an mbuf was
specified, it gets the cluster attached to it and the return value
can be safely ignored.
For size both take MCLBYTES, MJUM4BYTES, MJUM9BYTES, MJUM16BYTES.
Reviewed by: glebius
Tested by: glebius
Sponsored by: TCP/IP Optimization Fundraise 2005
"done" method so that for non-repeat operations we have completely
finished with the transfer by the time the callback is invoked.
This makes it possible to recycle a transfer from within the callback
routine for the same transfer. Previously this almost worked, but
with OHCI controllers calling the "done" method after the callback
would zero out some important fields needed by the recycled transfer.
Only some usb peripheral drivers such as ucom appear to rely on the
ability to reuse a transfer from its callback.
MFC after: 1 week
- Move vtophys() macros next to vtopte() where vtopte() exists to match
comments above vtopte().
- Remove references to the alternate address space in the comment above
vtopte(). amd64 never had the alternate address space, and i386 lost it
prior to PAE support being added.
- s/entires/entries/ in comments.
Reviewed by: alc
KTR_* class macros via genassym.c. Together with sys/sys/ktr.h
rev. 1.34 this has the desired side-effect of providing a default
value for KTR_COMPILE. Thus this fixes warnings from -Wundef
regarding KTR_COMPILE not being defined for .S files.
Requested by: ru
Reviewed by: ru
ktr_tracepoint() and the macros using it. This allows this header
to be included in .S files for obtaining the KTR_* class macros
directly and providing a default value for KTR_COMPILE in case it's
not specified in the kernel config file including defining it to 0
when not using 'options KTR' at all.
Requested by: ru
Reviewed by: ru
MACHINE_ARCH and MACHINE). Their purpose was to be able to test
in cpp(1), but cpp(1) only understands integer type expressions.
Using such unsupported expressions introduced a number of subtle
bugs, which were discovered by compiling with -Wundef.
_MACHINE == i386 test always succeeds, even on non-i386 (both
sides of expressions become 0). Remove the comment since
_MACHINE and _MACHINE_ARCH are going away.
of the radix lookup tables. Since several rnh_lookup() can run in
parallel on the same table, we can piggyback on the shared locking
provided by ipfw(4).
However, the single entry cache in the ip_fw_table can't be used lockless,
so it is removed. This pessimizes two cases: processing of bursts of similar
packets and matching one packet against the same table several times during
one ipfw_chk() lookup. To optimize the processing of similar packet bursts
administrator should use stateful firewall. To optimize the second problem
a solution will be provided soon.
Details:
o Since we piggyback on the ipfw(4) locking, and the latter is per-chain,
the tables are moved from the global declaration to the
struct ip_fw_chain.
o The struct ip_fw_table is shrunk to one entry and thus vanished.
o All table manipulating functions are extended to accept the struct
ip_fw_chain * argument.
o All table modifing functions use IPFW_WLOCK_ASSERT().
(suggested by alfred@)
o Reuse si_band field in struct __siginfo, add a mqd member which will
be used by mqueue.
o Add code SI_KERNEL to indicate a signal is queued by kernel.
Use the following kernel configuration option to enable:
options BPF_JITTER
If you want to use bpf_filter() instead (e. g., debugging), do:
sysctl net.bpf.jitter.enable=0
to turn it off.
Currently BIOCSETWF and bpf_mtap2() are unsupported, and bpf_mtap() is
partially supported because 1) no need, 2) avoid expensive m_copydata(9).
Obtained from: WinPcap 3.1 (for i386)
time ago appears to be based not on the typical 1.8432MHz clock, or
the other more typical multiple of 8 of this (14.7456MHz), but instead
it appears to be 1/2 the PCI clock rate or 16.50000MHz. I'm not 100%
sure that this is right, but since I did the original entry, I'm going
to go ahead and modify it. With the 14.7456MHz value, I was getting
bits that were ~7.3us instead of ~8.6us like they are supposed to be.
My measuring gear for today is a stupid handheld scope with two
signficant digits. So I don't know if it is 33.000000/2 MHz or some
other value close to 16.5MHz, but 16.5MHz works well enough for me to
use a couple of different devices at 115200 baud, and is a nice even
multiple of a well known clock frequency...
rather than embedding it in the intrframe as if_vec. This reduces diffs
with amd64 somewhat.
- Remove cf_vec from clockframe (it wasn't used anyway) and stop pushing
dummy vector arguments for ipi_bitmap_handler() and lapic_handle_timer()
since clockframe == trapframe now.
- Fix ddb to handle stack traces across interrupt entry points that just
have a trapframe on their stack and not a trapframe + vector.
- Change intr_execute_handlers() to take a trapframe rather than an
intrframe pointer.
- Change lapic_handle_intr() and atpic_handle_intr() to take a vector and
trapframe rather than an intrframe.
- GC struct intrframe now that nothing uses it anymore.
- GC CLOCK_TO_TRAPFRAME() and INTR_TO_TRAPFRAME().
Reviewed by: bde
Requested by: peter
ipi_nmi_handler() and into a new cpustop_handler() function. Change
the Xcpustop IPI_STOP handler to call this function instead of
duplicating all the same logic in assembly.
- EOI the local APIC for the lapic timer interrupt in C rather than
assembly.
- Bump the lazypmap IPI counter if COUNT_IPIS is defined in C rather than
assembly.