The CloudABI specification has had some minor changes over the last half
year. No substantial features have been added, but some features that
are deemed unnecessary in retrospect have been removed:
- mlock()/munlock():
These calls tend to be used for two different purposes: real-time
support and handling of sensitive (cryptographic) material that
shouldn't end up in swap. The former use case is out of scope for
CloudABI. The latter may also be handled by encrypting swap.
Removing this has the advantage that we no longer need to worry about
having resource limits put in place.
- SOCK_SEQPACKET:
Support for SOCK_SEQPACKET is rather inconsistent across various
operating systems. Some operating systems supported by CloudABI (e.g.,
macOS) don't support it at all. Considering that they are rarely used,
remove support for the time being.
- getsockname(), getpeername(), etc.:
A shortcoming of the sockets API is that it doesn't allow you to
create socket(pair)s, having fake socket addresses associated with
them. This makes it harder to test applications or transparently
forward (proxy) connections to them.
With CloudABI, we're slowly moving networking connectivity into a
separate daemon called Flower. In addition to passing around socket
file descriptors, this daemon provides address information in the form
of arbitrary string labels. There is thus no longer any need for
requesting socket address information from the kernel itself.
This change also updates consumers of the generated code accordingly.
Even though system calls end up getting renumbered, this won't cause any
problems in practice. CloudABI programs always call into the kernel
through a kernel-supplied vDSO that has the numbers updated as well.
Obtained from: https://github.com/NuxiNL/cloudabi
Rename kern_vm_* functions to kern_*. Move the prototypes to
syscallsubr.h. Also change Mach VM types to uintptr_t/size_t as
needed, to avoid headers pollution.
Requested by: alc, jhb
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D9535
kern_vm_munmap(), and kern_vm_madvise(), and use them in various compats
instead of their sys_*() counterparts.
Reviewed by: ed, dchagin, kib
MFC after: 2 weeks
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D9378
The type definitions and constants that were used by COMPAT_CLOUDABI64
are a literal copy of some headers stored inside of CloudABI's C
library, cloudlibc. What is annoying is that we can't make use of
cloudlibc's system call list, as the format is completely different and
doesn't provide enough information. It had to be synced in manually.
We recently decided to solve this (and some other problems) by moving
the ABI definitions into a separate file:
https://github.com/NuxiNL/cloudabi/blob/master/cloudabi.txt
This file is processed by a pile of Python scripts to generate the
header files like before, documentation (markdown), but in our case more
importantly: a FreeBSD system call table.
This change discards the old files in sys/contrib/cloudabi and replaces
them by the latest copies, which requires some minor changes here and
there. Because cloudabi.txt also enforces consistent names of the system
call arguments, we have to patch up a small number of system call
implementations to use the new argument names.
The new header files can also be included directly in FreeBSD kernel
space without needing any includes/defines, so we can now remove
cloudabi_syscalldefs.h and cloudabi64_syscalldefs.h. Patch up the
sources to include the definitions directly from sys/contrib/cloudabi
instead.
- Make the system call fail if prot contains bits other than read, write
and exec.
- Similar to OpenBSD's W^X, don't allow write and exec to be set at the
same time. I'd like to see for now what happens if we enforce this
policy unconditionally. If it turns out that this is far too strict,
we'll loosen this requirement.
Add support for the <sys/mman.h> functions by wrapping around our own
implementations. There are no kern_*() variants of these system calls,
but we also don't need them in this case. It is sufficient to just call
into the sys_*() functions.
Differential Revision: https://reviews.freebsd.org/D3033
Reviewed by: brooks
CloudABI is a pure capability-based runtime environment for UNIX. It
works similar to Capsicum, except that processes already run in
capabilities mode on startup. All functionality that conflicts with this
model has been omitted, making it a compact binary interface that can be
supported by other operating systems without too much effort.
CloudABI is 'secure by default'; the idea is that it should be safe to
run arbitrary third-party binaries without requiring any explicit
hardware virtualization (Bhyve) or namespace virtualization (Jails). The
rights of an application are purely determined by the set of file
descriptors that you grant it on startup.
The datatypes and constants used by CloudABI's C library (cloudlibc) are
defined in separate files called syscalldefs_mi.h (pointer size
independent) and syscalldefs_md.h (pointer size dependent). We import
these files in sys/contrib/cloudabi and wrap around them in
cloudabi*_syscalldefs.h.
We then add stubs for all of the system calls in sys/compat/cloudabi or
sys/compat/cloudabi64, depending on whether the system call depends on
the pointer size. We only have nine system calls that depend on the
pointer size. If we ever want to support 32-bit binaries, we can simply
add sys/compat/cloudabi32 and implement these nine system calls again.
The next step is to send in code reviews for the individual system call
implementations, but also add a sysentvec, to allow CloudABI executabled
to be started through execve().
More information about CloudABI:
- GitHub: https://github.com/NuxiNL/cloudlibc
- Talk at BSDCan: https://www.youtube.com/watch?v=SVdF84x1EdA
Differential Revision: https://reviews.freebsd.org/D2848
Reviewed by: emaste, brooks
Obtained from: https://github.com/NuxiNL/freebsd