- Instead of using a syscall slot (370) just to get a function prototype
for lkmressys(), add an explicit function prototype to <sys/sysent.h>.
This also removes unused special case checks for 'lkmressys' from
makesyscalls.sh.
- Instead of having magic logic in makesyscalls.sh to only generate a
function prototype the first time 'lkmnosys' is seen, make 'NODEF'
always not generate a function prototype and include an explicit
prototype for 'lkmnosys' in <sys/sysent.h>.
- As a result of the fix in (2), update the LKM syscall entries in
the freebsd32 syscall table to use 'lkmnosys' rather than 'nosys'.
- Use NOPROTO for the __syscall() entry (198) in the native ABI. This
avoids the need for magic logic in makesyscalls.h to only generate
a function prototype the first time 'nosys' is encountered.
allocated for posix_openpt(2). Unfortunately, that identifier
conflicts with other events already allocated to other systems in
OpenBSM. Assign a new globally unique identifier and conform
better to the AUE_ event naming scheme.
This is a stopgap until a new OpenBSM import is done with the
correct identifier, so we'll maintain this as a local diff in svn
until then.
Discussed with: ed
Obtained from: TrustedBSD Project
The previous commit also included changes to all the system call lists,
but it is a tradition to update these lists in a second commit, so rerun
make sysent to update the $FreeBSD$ tags inside these files to refer to
the latest version of syscalls.master.
Requested by: rwatson
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
As a result, those arguments must be recombined before calling the real
syscal implementation. This change fixes 32-bit compatibility for
cpuset_getid(), cpuset_setid(), cpuset_getaffinity(), and
cpuset_setaffinity().
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.
Highlights include:
* Thread-safe kernel RPC client - many threads can use the same RPC
client handle safely with replies being de-multiplexed at the socket
upcall (typically driven directly by the NIC interrupt) and handed
off to whichever thread matches the reply. For UDP sockets, many RPC
clients can share the same socket. This allows the use of a single
privileged UDP port number to talk to an arbitrary number of remote
hosts.
* Single-threaded kernel RPC server. Adding support for multi-threaded
server would be relatively straightforward and would follow
approximately the Solaris KPI. A single thread should be sufficient
for the NLM since it should rarely block in normal operation.
* Kernel mode NLM server supporting cancel requests and granted
callbacks. I've tested the NLM server reasonably extensively - it
passes both my own tests and the NFS Connectathon locking tests
running on Solaris, Mac OS X and Ubuntu Linux.
* Userland NLM client supported. While the NLM server doesn't have
support for the local NFS client's locking needs, it does have to
field async replies and granted callbacks from remote NLMs that the
local client has contacted. We relay these replies to the userland
rpc.lockd over a local domain RPC socket.
* Robust deadlock detection for the local lock manager. In particular
it will detect deadlocks caused by a lock request that covers more
than one blocking request. As required by the NLM protocol, all
deadlock detection happens synchronously - a user is guaranteed that
if a lock request isn't rejected immediately, the lock will
eventually be granted. The old system allowed for a 'deferred
deadlock' condition where a blocked lock request could wake up and
find that some other deadlock-causing lock owner had beaten them to
the lock.
* Since both local and remote locks are managed by the same kernel
locking code, local and remote processes can safely use file locks
for mutual exclusion. Local processes have no fairness advantage
compared to remote processes when contending to lock a region that
has just been unlocked - the local lock manager enforces a strict
first-come first-served model for both local and remote lockers.
Sponsored by: Isilon Systems
PR: 95247 107555 115524 116679
MFC after: 2 weeks
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
implement shm_open(2) and shm_unlink(2) in the kernel:
- Each shared memory file descriptor is associated with a swap-backed vm
object which provides the backing store. Each descriptor starts off with
a size of zero, but the size can be altered via ftruncate(2). The shared
memory file descriptors also support fstat(2). read(2), write(2),
ioctl(2), select(2), poll(2), and kevent(2) are not supported on shared
memory file descriptors.
- shm_open(2) and shm_unlink(2) are now implemented as system calls that
manage shared memory file descriptors. The virtual namespace that maps
pathnames to shared memory file descriptors is implemented as a hash
table where the hash key is generated via the 32-bit Fowler/Noll/Vo hash
of the pathname.
- As an extension, the constant 'SHM_ANON' may be specified in place of the
path argument to shm_open(2). In this case, an unnamed shared memory
file descriptor will be created similar to the IPC_PRIVATE key for
shmget(2). Note that the shared memory object can still be shared among
processes by sharing the file descriptor via fork(2) or sendmsg(2), but
it is unnamed. This effectively serves to implement the getmemfd() idea
bandied about the lists several times over the years.
- The backing store for shared memory file descriptors are garbage
collected when they are not referenced by any open file descriptors or
the shm_open(2) virtual namespace.
Submitted by: dillon, peter (previous versions)
Submitted by: rwatson (I based this on his version)
Reviewed by: alc (suggested converting getmemfd() to shm_open())
64-bit counters) to a 4.x statfs structure (with long-sized counters).
- For block counters, we scale up the block size sufficiently large so
that the resulting block counts fit into a the long-sized (long for the
ABI, so 32-bit in freebsd32) counters. In 4.x the NFS client's statfs
VOP did this already. This can lie about the block size to 4.x binaries,
but it presents a more accurate picture of the ratios of free and
available space.
- For non-block counters, fix the freebsd32 stats converter to cap the
values at INT32_MAX rather than losing the upper 32-bits to match the
behavior of the 4.x statfs conversion routine in vfs_syscalls.c
Approved by: re (kensmith)
the correct syscalls.master's $FreeBSD$ tag record and
a make sysent in sys/compat/freebsd32. Thanks Ruslan
for pointing out the steps I missed :-0
Approved by: gnn
work is not just mine, but it is also the works of Peter Lei
and Michael Tuexen. They both are my two key other developers
working on the project.. and they need ata-boy's too:
****
peterlei@cisco.comtuexen@fh-muenster.de
****
I did do a make sysent which updated the
syscall's and sysproto.. I hope that is correct... without
it you don't build since we have new syscalls for SCTP :-0
So go out and look at the NOTES, add
option SCTP (make sure inet and inet6 are present too)
and play with SCTP.
I will see about comitting some test tools I have after I
figure out where I should place them. I also have a
lib (libsctp.a) that adds some of the missing socketapi
functions that I need to put into lib's.. I will talk
to George about this :-)
There may still be some 64 bit issues in here, none of
us have a 64 bit processor to test with yet.. Michael
may have a MAC but thats another beast too..
If you have a mac and want to use SCTP contact Michael
he maintains a web site with a loadable module with
this code :-)
Reviewed by: gnn
Approved by: gnn
calls are not used by libthr in RELENG_6 and HEAD, it is only used by
the libthr in RELENG-5, the _umtx_op system call can do more incremental
dirty works than these two system calls without having to introduce new
system calls or throw away old system calls when things are going on.
has in its procfs (do a readlink of /proc/self/fd/<nn> to find the pathname
that corresponds to a given file descriptor). Valgrind-3.x needs this
functionality. This is a placeholder only at this time.
- Send the systrace_args files for all the compat ABIs to /dev/null for
now. Right now makesyscalls.sh generates a file with a hardcoded
function name, so it wouldn't work for any of the ABIs anyway. Probably
the function name should be configurable via a 'systracename' variable
and the functions should be stored in a function pointer in the sysvec
structure.
mark system calls as being MPSAFE:
- Stop conditionally acquiring Giant around system call invocations.
- Remove all of the 'M' prefixes from the master system call files.
- Remove support for the 'M' prefix from the script that generates the
syscall-related files from the master system call files.
- Don't explicitly set SYF_MPSAFE when registering nfssvc.
use by ABI emulators.
- Alter the interface of kern_recvit() somewhat. Specifically, go ahead
and hard code UIO_USERSPACE in the uio as that's what all the callers
specify. In place, add a new uioseg to indicate what type of pointer
is in mp->msg_name. Previously it was always a userland address, but
ABI emulators may pass in kernel-side sockaddrs. Also, remove the
namelenp field and instead require the two places that used it to
explicitly copy mp->msg_namelen out to userland.
- Use the patched kern_recvit() to replace svr4_recvit() and the stock
kern_sendit() to replace svr4_sendit().
- Use kern_bind() instead of stackgap use in ti_bind().
- Use kern_getpeername() and kern_getsockname() instead of stackgap in
svr4_stream_ti_ioctl().
- Use kern_connect() instead of stackgap in svr4_do_putmsg().
- Use kern_getpeername() and kern_accept() instead of stackgap in
svr4_do_getmsg().
- Retire the stackgap from SVR4 compat as it is no longer used.
from going away. mount(2) is now MPSAFE.
- Expand the scope of Giant some in unmount(2) to protect the mp structure
(or rather, to handle concurrent unmount races) from going away.
umount(2) is now MPSAFE, as well as linux_umount() and linux_oldumount().
- nmount(2) and linux_mount() were already MPSAFE.