This reverts commit 6a7c0ccca4.
A proper fix for Issue #1648 was landed under Issue #1890, so this is no
longer needed.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1648
The required Posix ACL interfaces are only available for kernels
with CONFIG_FS_POSIX_ACL defined. Therefore, only enable Posix
ACL support for these kernels. All major distribution kernels
enable CONFIG_FS_POSIX_ACL by default.
If your kernel does not support Posix ACLs the following warning
will be printed at ZFS module load time.
"ZFS: Posix ACLs disabled by kernel"
Signed-off-by: Massimo Maggi <me@massimo-maggi.eu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1825
This change adds support for Posix ACLs by storing them as an xattr
which is common practice for many Linux file systems. Since the
Posix ACL is stored as an xattr it will not overwrite any existing
ZFS/NFSv4 ACLs which may have been set. The Posix ACL will also
be non-functional on other platforms although it may be visible
as an xattr if that platform understands SA based xattrs.
By default Posix ACLs are disabled but they may be enabled with
the new 'aclmode=noacl|posixacl' property. Set the property to
'posixacl' to enable them. If ZFS/NFSv4 ACL support is ever added
an appropriate acltype will be added.
This change passes the POSIX Test Suite cleanly with the exception
of xacl/00.t test 45 which is incorrect for Linux (Ext4 fails too).
http://www.tuxera.com/community/posix-test-suite/
Signed-off-by: Massimo Maggi <me@massimo-maggi.eu>
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#170
Attempting to remove an xattr from a file which does not contain
any directory based xattrs would result in the xattr directory
being created. This behavior is non-optimal because it results
in write operations to the pool in addition to the expected error
being returned.
To prevent this the CREATE_XATTR_DIR flag is only passed in
zpl_xattr_set_dir() when setting a non-NULL xattr value. In
addition, zpl_xattr_set() is updated similarly such that it will
return immediately if passed an xattr name which doesn't exist
and a NULL value.
Signed-off-by: Massimo Maggi <me@massimo-maggi.eu>
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #170
There is currently a subtle bug in the SA implementation which
can crop up which prevents us from safely using multiple variable
length SAs in one object.
Fortunately, the only existing use case for this are symlinks with
SA based xattrs. Therefore, until the root cause in the SA code
can be identified and fixed we prevent adding SA xattrs to symlinks.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1468
Commit torvalds/linux@2233f31aad
replaced ->readdir() with ->iterate() in struct file_operations.
All filesystems must now use the new ->iterate method.
To handle this the code was reworked to use the new ->iterate
interface. Care was taken to keep the majority of changes
confined to the ZPL layer which is already Linux specific.
However, minor changes were required to the common zfs_readdir()
function.
Compatibility with older kernels was accomplished by adding
versions of the trivial dir_emit* helper functions. Also the
various *_readdir() functions were reworked in to wrappers
which create a dir_context structure to pass to the new
*_iterate() functions.
Unfortunately, the new dir_emit* functions prevent us from
passing a private pointer to the filldir function. The xattr
directory code leveraged this ability through zfs_readdir()
to generate the list of xattr names. Since we can no longer
use zfs_readdir() a simplified zpl_xattr_readdir() function
was added to perform the same task.
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1653
Issue #1591
When SA xattrs are enabled only fallback to checking the directory
xattrs when the name is not found as a SA xattr. Otherwise, the SA
error which should be returned to the caller is overwritten by the
directory xattr errors. Positive return values indicating success
will also be immediately returned.
In the case of #1437 the ERANGE error was being correctly returned
by zpl_xattr_get_sa() only to be overridden with ENOENT which was
returned by the subsequent unnessisary call to zpl_xattr_get_dir().
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1437
According to the getxattr(2) man page the ERANGE errno should be
returned when the size of the value buffer is to small to hold the
result. Prior to this patch the implementation would just truncate
the value to size bytes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1408
The xattr_resolve_name() helper function expects the registered
list of xattr handlers to be NULL terminated. This NULL was
accidentally missing which could result in a NULL dereference.
Interestingly this issue only manifested itself on certain 32-bit
systems. Presumably on 64-bit kernels we just always happen to
get lucky and the memory following the structure is zeroed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #594
Make the indenting in the zpl_xattr.c file consistent with the Sun
coding standard by removing soft tabs.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The security_inode_init_security() API has been changed to include
a filesystem specific callback to write security extended attributes.
This was done to support the initialization of multiple LSM xattrs
and the EVM xattr.
This change updates the code to use the new API when it's available.
Otherwise it falls back to the previous implementation.
In addition, the ZFS_AC_KERNEL_6ARGS_SECURITY_INODE_INIT_SECURITY
autoconf test has been made more rigerous by passing the expected
types. This is done to ensure we always properly the detect the
correct form for the security_inode_init_security() API.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#516
The current ZFS implementation stores xattrs on disk using a hidden
directory. In this directory a file name represents the xattr name
and the file contexts are the xattr binary data. This approach is
very flexible and allows for arbitrarily large xattrs. However,
it also suffers from a significant performance penalty. Accessing
a single xattr can requires up to three disk seeks.
1) Lookup the dnode object.
2) Lookup the dnodes's xattr directory object.
3) Lookup the xattr object in the directory.
To avoid this performance penalty Linux filesystems such as ext3
and xfs try to store the xattr as part of the inode on disk. When
the xattr is to large to store in the inode then a single external
block is allocated for them. In practice most xattrs are small
and this approach works well.
The addition of System Attributes (SA) to zfs provides us a clean
way to make this optimization. When the dataset property 'xattr=sa'
is set then xattrs will be preferentially stored as System Attributes.
This allows tiny xattrs (~100 bytes) to be stored with the dnode and
up to 64k of xattrs to be stored in the spill block. If additional
xattr space is required, which is unlikely under Linux, they will be
stored using the traditional directory approach.
This optimization results in roughly a 3x performance improvement
when accessing xattrs which brings zfs roughly to parity with ext4
and xfs (see table below). When multiple xattrs are stored per-file
the performance improvements are even greater because all of the
xattrs stored in the spill block will be cached.
However, by default SA based xattrs are disabled in the Linux port
to maximize compatibility with other implementations. If you do
enable SA based xattrs then they will not be visible on platforms
which do not support this feature.
----------------------------------------------------------------------
Time in seconds to get/set one xattr of N bytes on 100,000 files
------+--------------------------------+------------------------------
| setxattr | getxattr
bytes | ext4 xfs zfs-dir zfs-sa | ext4 xfs zfs-dir zfs-sa
------+--------------------------------+------------------------------
1 | 2.33 31.88 21.50 4.57 | 2.35 2.64 6.29 2.43
32 | 2.79 30.68 21.98 4.60 | 2.44 2.59 6.78 2.48
256 | 3.25 31.99 21.36 5.92 | 2.32 2.71 6.22 3.14
1024 | 3.30 32.61 22.83 8.45 | 2.40 2.79 6.24 3.27
4096 | 3.57 317.46 22.52 10.73 | 2.78 28.62 6.90 3.94
16384 | n/a 2342.39 34.30 19.20 | n/a 45.44 145.90 7.55
65536 | n/a 2941.39 128.15 131.32* | n/a 141.92 256.85 262.12*
Legend:
* ext4 - Stock RHEL6.1 ext4 mounted with '-o user_xattr'.
* xfs - Stock RHEL6.1 xfs mounted with default options.
* zfs-dir - Directory based xattrs only.
* zfs-sa - Prefer SAs but spill in to directories as needed, a
trailing * indicates overflow in to directories occured.
NOTE: Ext4 supports 4096 bytes of xattr name/value pairs per file.
NOTE: XFS and ZFS have no limit on xattr name/value pairs per file.
NOTE: Linux limits individual name/value pairs to 65536 bytes.
NOTE: All setattr/getattr's were done after dropping the cache.
NOTE: All tests were run against a single hard drive.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #443
The .get_sb callback has been replaced by a .mount callback
in the file_system_type structure. When using the new
interface the caller must now use the mount_nodev() helper.
Unfortunately, the new interface no longer passes the vfsmount
down to the zfs layers. This poses a problem for the existing
implementation because we currently save this pointer in the
super block for latter use. It provides our only entry point
in to the namespace layer for manipulating certain mount options.
This needed to be done originally to allow commands like
'zfs set atime=off tank' to work properly. It also allowed me
to keep more of the original Solaris code unmodified. Under
Solaris there is a 1-to-1 mapping between a mount point and a
file system so this is a fairly natural thing to do. However,
under Linux they many be multiple entries in the namespace
which reference the same filesystem. Thus keeping a back
reference from the filesystem to the namespace is complicated.
Rather than introduce some ugly hack to get the vfsmount and
continue as before. I'm leveraging this API change to update
the ZFS code to do things in a more natural way for Linux.
This has the upside that is resolves the compatibility issue
for the long term and fixes several other minor bugs which
have been reported.
This commit updates the code to remove this vfsmount back
reference entirely. All modifications to filesystem mount
options are now passed in to the kernel via a '-o remount'.
This is the expected Linux mechanism and allows the namespace
to properly handle any options which apply to it before passing
them on to the file system itself.
Aside from fixing the compatibility issue, removing the
vfsmount has had the benefit of simplifying the code. This
change which fairly involved has turned out nicely.
Closes#246Closes#217Closes#187Closes#248Closes#231
The security_inode_init_security() function now takes an additional
qstr argument which must be passed in from the dentry if available.
Passing a NULL is safe when no qstr is available the relevant
security checks will just be skipped.
Closes#246Closes#217Closes#187
If the attribute's new value was shorter than the old one the old
code would leave parts of the old value in the xattr znode.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#203
As of Linux 2.6.29 a clean credential API was added to the Linux kernel.
Previously the credential was embedded in the task_struct. Because the
SPL already has considerable support for handling this API change the
ZPL code has been updated to use the Solaris credential API.
The xattr handler prototypes were sanitized with the idea being that
the same handlers could be used for multiple methods. The result of
this was the inode type was changes to a dentry, and both the get()
and set() hooks had a handler_flags argument added. The list()
callback was similiarly effected but no autoconf check was added
because we do not use the list() callback.
The const keyword was added to the 'struct xattr_handler' in the
generic Linux super_block structure. To handle this we define an
appropriate xattr_handler_t typedef which can be used. This was
the preferred solution because it keeps the code clean and readable.
The Linux specific xattr operations have all been located in the
file zpl_xattr.c. These functions primarily rely on the reworked
zfs_* functions to do their job. They are also responsible for
converting the possible Solaris style error codes to negative
Linux errors.