Commit Graph

5 Commits

Author SHA1 Message Date
Hiroki Sato
2e322d3796 Replace Sun RPC license in TI-RPC library with a 3-clause BSD license,
with the explicit permission of Sun Microsystems in 2009.
2013-11-25 19:04:36 +00:00
Brooks Davis
838d985825 Rework the credential code to support larger values of NGROUPS and
NGROUPS_MAX, eliminate ABI dependencies on them, and raise the to 1024
and 1023 respectively.  (Previously they were equal, but under a close
reading of POSIX, NGROUPS_MAX was defined to be too large by 1 since it
is the number of supplemental groups, not total number of groups.)

The bulk of the change consists of converting the struct ucred member
cr_groups from a static array to a pointer.  Do the equivalent in
kinfo_proc.

Introduce new interfaces crcopysafe() and crsetgroups() for duplicating
a process credential before modifying it and for setting group lists
respectively.  Both interfaces take care for the details of allocating
groups array. crsetgroups() takes care of truncating the group list
to the current maximum (NGROUPS) if necessary.  In the future,
crsetgroups() may be responsible for insuring invariants such as sorting
the supplemental groups to allow groupmember() to be implemented as a
binary search.

Because we can not change struct xucred without breaking application
ABIs, we leave it alone and introduce a new XU_NGROUPS value which is
always 16 and is to be used or NGRPS as appropriate for things such as
NFS which need to use no more than 16 groups.  When feasible, truncate
the group list rather than generating an error.

Minor changes:
  - Reduce the number of hand rolled versions of groupmember().
  - Do not assign to both cr_gid and cr_groups[0].
  - Modify ipfw to cache ucreds instead of part of their contents since
    they are immutable once referenced by more than one entity.

Submitted by:	Isilon Systems (initial implementation)
X-MFC after:	never
PR:		bin/113398 kern/133867
2009-06-19 17:10:35 +00:00
Robert Watson
dab07fbcef Add a temporary workaround for panics being seen on NFS servers with ZFS,
where an improperly initialized prison field could lead to a panic.  This
is not the correct solution, since it fails to address similar problems
for both AUDIT and MAC, which also rely on properly initialized
credentials, but should reduce panic reports while we work that out.

Reported by:	ps, kan, others
2009-06-07 20:51:31 +00:00
Doug Rabson
a9148abd9d Implement support for RPCSEC_GSS authentication to both the NFS client
and server. This replaces the RPC implementation of the NFS client and
server with the newer RPC implementation originally developed
(actually ported from the userland sunrpc code) to support the NFS
Lock Manager.  I have tested this code extensively and I believe it is
stable and that performance is at least equal to the legacy RPC
implementation.

The NFS code currently contains support for both the new RPC
implementation and the older legacy implementation inherited from the
original NFS codebase. The default is to use the new implementation -
add the NFS_LEGACYRPC option to fall back to the old code. When I
merge this support back to RELENG_7, I will probably change this so
that users have to 'opt in' to get the new code.

To use RPCSEC_GSS on either client or server, you must build a kernel
which includes the KGSSAPI option and the crypto device. On the
userland side, you must build at least a new libc, mountd, mount_nfs
and gssd. You must install new versions of /etc/rc.d/gssd and
/etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf.

As long as gssd is running, you should be able to mount an NFS
filesystem from a server that requires RPCSEC_GSS authentication. The
mount itself can happen without any kerberos credentials but all
access to the filesystem will be denied unless the accessing user has
a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There
is currently no support for situations where the ticket file is in a
different place, such as when the user logged in via SSH and has
delegated credentials from that login. This restriction is also
present in Solaris and Linux. In theory, we could improve this in
future, possibly using Brooks Davis' implementation of variant
symlinks.

Supporting RPCSEC_GSS on a server is nearly as simple. You must create
service creds for the server in the form 'nfs/<fqdn>@<REALM>' and
install them in /etc/krb5.keytab. The standard heimdal utility ktutil
makes this fairly easy. After the service creds have been created, you
can add a '-sec=krb5' option to /etc/exports and restart both mountd
and nfsd.

The only other difference an administrator should notice is that nfsd
doesn't fork to create service threads any more. In normal operation,
there will be two nfsd processes, one in userland waiting for TCP
connections and one in the kernel handling requests. The latter
process will create as many kthreads as required - these should be
visible via 'top -H'. The code has some support for varying the number
of service threads according to load but initially at least, nfsd uses
a fixed number of threads according to the value supplied to its '-n'
option.

Sponsored by:	Isilon Systems
MFC after:	1 month
2008-11-03 10:38:00 +00:00
Doug Rabson
dfdcada31e Add the new kernel-mode NFS Lock Manager. To use it instead of the
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.

Highlights include:

* Thread-safe kernel RPC client - many threads can use the same RPC
  client handle safely with replies being de-multiplexed at the socket
  upcall (typically driven directly by the NIC interrupt) and handed
  off to whichever thread matches the reply. For UDP sockets, many RPC
  clients can share the same socket. This allows the use of a single
  privileged UDP port number to talk to an arbitrary number of remote
  hosts.

* Single-threaded kernel RPC server. Adding support for multi-threaded
  server would be relatively straightforward and would follow
  approximately the Solaris KPI. A single thread should be sufficient
  for the NLM since it should rarely block in normal operation.

* Kernel mode NLM server supporting cancel requests and granted
  callbacks. I've tested the NLM server reasonably extensively - it
  passes both my own tests and the NFS Connectathon locking tests
  running on Solaris, Mac OS X and Ubuntu Linux.

* Userland NLM client supported. While the NLM server doesn't have
  support for the local NFS client's locking needs, it does have to
  field async replies and granted callbacks from remote NLMs that the
  local client has contacted. We relay these replies to the userland
  rpc.lockd over a local domain RPC socket.

* Robust deadlock detection for the local lock manager. In particular
  it will detect deadlocks caused by a lock request that covers more
  than one blocking request. As required by the NLM protocol, all
  deadlock detection happens synchronously - a user is guaranteed that
  if a lock request isn't rejected immediately, the lock will
  eventually be granted. The old system allowed for a 'deferred
  deadlock' condition where a blocked lock request could wake up and
  find that some other deadlock-causing lock owner had beaten them to
  the lock.

* Since both local and remote locks are managed by the same kernel
  locking code, local and remote processes can safely use file locks
  for mutual exclusion. Local processes have no fairness advantage
  compared to remote processes when contending to lock a region that
  has just been unlocked - the local lock manager enforces a strict
  first-come first-served model for both local and remote lockers.

Sponsored by:	Isilon Systems
PR:		95247 107555 115524 116679
MFC after:	2 weeks
2008-03-26 15:23:12 +00:00