removals, including failures, into the callwheel.
XXX: Most of the CTR() macros are called with callout_lock spin mutex
held, thus won't be logged into file, if KTR_ALQ is used. Moving the
CTR() macros out from the spinlocked code would require copying of all
arguments. I'm too lazy to do this.
callout_drain() logic. We no longer need a separate non-spin mutex to
do sleep/wakeup with, instead we can now just use the one spin mutex to
manage all the callout functionality.
list, set `curr_callout' to NULL. This ensures that we won't attempt
to cancel the current callout if the original callout structure
gets recycled while we wait to acquire Giant.
This is reported to fix an intermittent syscons problem that was
introduced by revision 1.96.
callout is first initialised, using a new function callout_init_mtx().
The callout system will acquire this mutex before calling the callout
function and release it on return.
In addition, the callout system uses the mutex to avoid most of the
complications and race conditions inherent in asynchronous timer
facilities, so mutex-protected callouts have much simpler semantics.
As long as the mutex is held when invoking callout_stop() or
callout_reset(), then these functions will guarantee that the callout
will be stopped, even if softclock() had already begun to process
the callout.
Existing Giant-locked callouts will automatically pick up the new
race-free semantics. This should close a number of race conditions
in the USB code and probably other areas of the kernel too.
There should be no change in behaviour for "MP-safe" callouts; these
still need to use the techniques mentioned in timeout(9) to avoid
race conditions.
callout_reset rather than calling callout_stop. This results in a few
lines of code duplication, but it provides a significant performance
improvement because it avoids recursing on callout_lock.
Requested by: rwatson
2. Document that this means that kernel modules must be rebuilt.
3. While I'm here, fix my sorting error in callout.h
Requested by: many [1], scottl [2], bde [3]
Remove spurious whitespace, add indent protection, fix punctuation,
remove initialization of static variables to zero, put wakeup_ctr
and wakeup_needed in the correct order. (reported by bde)
This doesn't fix all the style bugs I introduced, but the remaining
style bugs make it easier for me to understand what I did here.
callout_stop(), except that if the callout being stopped is currently
in progress, it blocks attempts to reset the callout and waits until the
callout is completed before it returns.
This makes it possible to clean up callout-using code safely, e.g.,
without potentially freeing memory which is still being used by a callout.
Reviewed by: mux, gallatin, rwatson, jhb
functions less noisy: We printf if a new function took longer than
the previous record holder, or of the previous record holder took
more than twice as long as the current record.
deleted in 1.81. Increase the initial timeout limit to 2ms to
eliminate spurious messages of excessive timeouts in the NFS
client code.
Requested by: Poul-Henning Kamp <phk@phk.freebsd.dk>
Requested by: Mike Silbersack <silby@silby.com>
Requested by: Sam Leffler <sam@errno.com>
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
timeout callwheel and buffer cache, out of the platform specific areas
and into the machine independant area. i386 and alpha adjusted here.
Other cpus can be fixed piecemeal.
Reviewed by: freebsd-smp, jake
removing the callout entry, return 1. If callout_stop() fails to remove
the callout entry because it is currently executing or has already been
executed, then the function returns 0. The idea was obtained from BSD/OS,
however, BSD/OS changed untimeout(), and I've just changed callout_stop()
to be more conservative.
Obtained from: BSD/OS
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
- Use the mutex in hardclock to ensure no races between it and
softclock.
- Make softclock be INTR_MPSAFE and provide a flag,
CALLOUT_MPSAFE, which specifies that a callout handler does not
need giant. There is still no way to set this flag when
regstering a callout.
Reviewed by: -smp@, jlemon
are in softclock() for a long time. The old code already did an
splx()/slphigh() pair here, I just missed adding in the equivalent mutex
operations on sched_lock earlier.
untimeout() not being called with Giant in those functions. For now,
use the sched_lock to protect the callout wheel in softclock() and in
the various timeout and callout functions.
Noticed by: tegge
type of software interrupt. Roughly, what used to be a bit in spending
now maps to a swi thread. Each thread can have multiple handlers, just
like a hardware interrupt thread.
- Instead of using a bitmask of pending interrupts, we schedule the specific
software interrupt thread to run, so spending, NSWI, and the shandlers
array are no longer needed. We can now have an arbitrary number of
software interrupt threads. When you register a software interrupt
thread via sinthand_add(), you get back a struct intrhand that you pass
to sched_swi() when you wish to schedule your swi thread to run.
- Convert the name of 'struct intrec' to 'struct intrhand' as it is a bit
more intuitive. Also, prefix all the members of struct intrhand with
'ih_'.
- Make swi_net() a MI function since there is now no point in it being
MD.
Submitted by: cp
- eliminate the fast/slow timeout lists for TCP and instead use a
callout entry for each timer.
- increase the TCP timer granularity to HZ
- implement "bad retransmit" recovery, as presented in
"On Estimating End-to-End Network Path Properties", by Allman and Paxson.
Submitted by: jlemon, wollmann
to manage their own memory. Tested on my machine (make buildworld).
I've made analogous changes on the alpha, but don't have a machine
to test.
Not-objected-to by: dg, gibbs