be malloc()ed, but they are now allocated using mmap(), just as the
default-size stacks are. A separate cache of stacks is kept for
non-default-size stacks.
Collaboration with: deischen
_foo - wrapped system call
foo - weak definition to _foo
and for cancellation points:
_foo - wrapped system call
__foo - enter cancellation point, call _foo(), leave
cancellation point
foo - weak definition to __foo
Change use of global _thread_run to call a function to get the
currently running thread.
Make all pthread_foo functions weak definitions to _pthread_foo,
where _pthread_foo is the implementation. This allows an application
to provide its own pthread functions.
Provide slightly different versions of pthread_mutex_lock and
pthread_mutex_init so that we can tell the difference between
a libc mutex and an application mutex. Threads holding mutexes
internal to libc should never be allowed to exit, call signal
handlers, or cancel.
Approved by: -arch
thread switches should be on par with that under scheduler
activations.
o Timing is achieved through the use of a fixed interval
timer (ITIMER_PROF) to count scheduling ticks instead
of retrieving the time-of-day upon every thread switch
and calculating elapsed real time.
o Polling for I/O readiness is performed once for each
scheduling tick instead of every thread switch.
o The non-signal saving/restoring versions of setjmp/longjmp
are used to save and restore thread contexts. This may
allow the removal of _THREAD_SAFE macros from setjmp()
and longjmp() - needs more investigation.
Change signal handling so that signals are handled in the
context of the thread that is receiving the signal. When
signals are dispatched to a thread, a special signal handling
frame is created on top of the target threads stack. The
frame contains the threads saved state information and a new
context in which the thread can run. The applications signal
handler is invoked through a wrapper routine that knows how
to restore the threads saved state and unwind to previous
frames.
Fix interruption of threads due to signals. Some states
were being improperly interrupted while other states were
not being interrupted. This should fix several PRs.
Signal handlers, which are invoked as a result of a process
signal (not by pthread_kill()), are now called with the
code (or siginfo_t if SA_SIGINFO was set in sa_flags) and
sigcontext_t as received from the process signal handler.
Modify the search for a thread to which a signal is delivered.
The search algorithm is now:
o First thread found in sigwait() with signal in wait mask.
o First thread found sigsuspend()'d on the signal.
o Current thread if signal is unmasked.
o First thread found with signal unmasked.
Collapse machine dependent support into macros defined in
pthread_private.h. These should probably eventually be moved
into separate MD files.
Change the range of settable priorities to be compliant with
POSIX (0-31). The threads library uses higher priorities
internally for real-time threads (not yet implemented) and
threads executing signal handlers. Real-time threads and
threads running signal handlers add 64 and 32, respectively,
to a threads base priority.
Some other small changes and cleanups.
PR: 17757 18559 21943
Reviewed by: jasone
Always use mmap() for default-size stack allocation. Use MAP_ANON instead
of MAP_STACK on the alpha architecture.
Reduce the amount of code executed while owning _gc_mutex during stack
allocation.
Cache discarded default thread stacks for use in subsequent thread creations.
Create a red zone at the end of each stack (including the initial thread
stack), with the hope of causing a segfault if a stack overflows.
To activate these modifications, add -D_PTHREAD_GSTACK to CFLAGS in
src/lib/libc_r/Makefile. Since the modifications depend on the VM_STACK
kernel option, I'm not sure how to safely use growable stacks by default.
Testing, as well as algorithmic and stylistic comments are welcome.
o The polling mechanism for I/O readiness was changed from
select() to poll(). In additon, a wrapped version of poll()
is now provided.
o The wrapped select routine now converts each fd_set to a
poll array so that the thread scheduler doesn't have to
perform a bitwise search for selected fds each time file
descriptors are polled for I/O readiness.
o The thread scheduler was modified to use a new queue (_workq)
for threads that need work. Threads waiting for I/O readiness
and spinblocks are added to the work queue in addition to the
waiting queue. This reduces the time spent forming/searching
the array of file descriptors being polled.
o The waiting queue (_waitingq) is now maintained in order of
thread wakeup time. This allows the thread scheduler to
find the nearest wakeup time by looking at the first thread
in the queue instead of searching the entire queue.
o Removed file descriptor locking for select/poll routines. An
application should not rely on the threads library for providing
this locking; if necessary, the application should use mutexes
to protect selecting/polling of file descriptors.
o Retrieve and use the kernel clock rate/resolution at startup
instead of hardcoding the clock resolution to 10 msec (tested
with kernel running at 1000 HZ).
o All queues have been changed to use queue.h macros. These
include the queues of all threads, dead threads, and threads
waiting for file descriptor locks.
o Added reinitialization of the GC mutex and condition variable
after a fork. Also prevented reallocation of the ready queue
after a fork.
o Prevented the wrapped close routine from closing the thread
kernel pipes.
o Initialized file descriptor table for stdio entries at thread
init.
o Provided additional flags to indicate to what queues threads
belong.
o Moved TAILQ initialization for statically allocated mutex and
condition variables to after the spinlock.
o Added dispatching of signals to pthread_kill. Removing the
dispatching of signals from thread activation broke sigsuspend
when pthread_kill was used to send a signal to a thread.
o Temporarily set the state of a thread to PS_SUSPENDED when it
is first created and placed in the list of threads so that it
will not be accidentally scheduled before becoming a member
of one of the scheduling queues.
o Change the signal handler to queue signals to the thread kernel
pipe if the scheduling queues are protected. When scheduling
queues are unprotected, signals are then dequeued and handled.
o Ensured that all installed signal handlers block the scheduling
signal and that the scheduling signal handler blocks all
other signals. This ensures that the signal handler is only
interruptible for and by non-scheduling signals. An atomic
lock is used to decide which instance of the signal handler
will handle pending signals.
o Removed _lock_thread_list and _unlock_thread_list as they are
no longer used to protect the thread list.
o Added missing RCS IDs to modified files.
o Added checks for appropriate queue membership and activity when
adding, removing, and searching the scheduling queues. These
checks add very little overhead and are enabled when compiled
with _PTHREADS_INVARIANTS defined. Suggested and implemented
by Tor Egge with some modification by me.
o Close a race condition in uthread_close. (Tor Egge)
o Protect the scheduling queues while modifying them in
pthread_cond_signal and _thread_fd_unlock. (Tor Egge)
o Ensure that when a thread gets a mutex, the mutex is on that
threads list of owned mutexes. (Tor Egge)
o Set the kernel-in-scheduler flag in _thread_kern_sched_state
and _thread_kern_sched_state_unlock to prevent a scheduling
signal from calling the scheduler again. (Tor Egge)
o Don't use TAILQ_FOREACH macro while searching the waiting
queue for threads in a sigwait state, because a change of
state destroys the TAILQ link. It is actually safe to do
so, though, because once a sigwaiting thread is found, the
loop ends and the function returns. (Tor Egge)
o When dispatching signals to threads, make the thread inherit
the signal deferral flag of the currently running thread.
(Tor Egge)
Submitted by: Daniel Eischen <eischen@vigrid.com> and
Tor Egge <Tor.Egge@fast.no>
o Runnable threads are now maintained in priority queues. The
implementation requires two things:
1.) The priority queues must be protected during insertion
and removal of threads. Since the kernel scheduler
must modify the priority queues, a spinlock for
protection cannot be used. The functions
_thread_kern_sched_defer() and _thread_kern_sched_undefer()
were added to {un}defer kernel scheduler activation.
2.) A thread (active) priority change can be performed only
when the thread is removed from the priority queue. The
implementation uses a threads active priority when
inserting it into the queue.
A by-product is that thread switches are much faster. A
separate queue is used for waiting and/or blocked threads,
and it is searched at most 2 times in the kernel scheduler
when there are active threads. It should be possible to
reduce this to once by combining polling of threads waiting
on I/O with the loop that looks for timed out threads and
the minimum timeout value.
o Functions to defer kernel scheduler activation were added. These
are _thread_kern_sched_defer() and _thread_kern_sched_undefer()
and may be called recursively. These routines do not block the
scheduling signal, but latch its occurrence. The signal handler
will not call the kernel scheduler when the running thread has
deferred scheduling, but it will be called when running thread
undefers scheduling.
o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the
POSIX routines required by this should now be implemented.
One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required
to be defined by including pthread.h. These defines are currently
in sched.h. I modified pthread.h to include sched.h but don't
know if this is the proper thing to do.
o Added support for priority protection and inheritence mutexes.
This allows definition of _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT.
o Added additional error checks required by POSIX for mutexes and
condition variables.
o Provided a wrapper for sigpending which is marked as a hidden
syscall.
o Added a non-portable function as a debugging aid to allow an
application to monitor thread context switches. An application
can install a routine that gets called everytime a thread
(explicitly created by the application) gets context switched.
The routine gets passed the pthread IDs of the threads that are
being switched in and out.
Submitted by: Dan Eischen <eischen@vigrid.com>
Changes by me:
o Added a PS_SPINBLOCK state to deal with the priority inversion
problem most often (I think) seen by threads calling malloc/free/realloc.
o Dispatch signals to the running thread directly rather than at a
context switch to avoid the situation where the switch never occurs.
the thread kernel into a garbage collector thread which is started when
the fisrt thread is created (other than the initial thread). This
removes the window of opportunity where a context switch will cause a
thread that has locked the malloc spinlock, to enter the thread kernel,
find there is a dead thread and try to free memory, therefore trying
to lock the malloc spinlock against itself.
The garbage collector thread acts just like any other thread, so
instead of having a spinlock to control accesses to the dead thread
list, it uses a mutex and a condition variable so that it can happily
wait to be signalled when a thread exists.