Use mbuf tagging for accounted packets to not account packets twice when
both ingress and egress netflow enabled.
To keep compatibility new "setconfig" message added to control new
functionality. By default node works as before, doing only ingress
accounting without using mbuf tags.
Reviewed by: glebius
This changes from a line discipline to the tty_hooks mechanism. Data will come
in directly via rint_bypass and sent to the peer node in a single mbuf.
As line disciplines are no longer used a new netgraph command called
NGM_TTY_SET_TTY is used to attach the tty. This takes a pointer to to the open
file descriptor of the tty and registers the tty hooks. When the tty disappears
the node will shutdown.
Thanks to: ed
Sponsored by: Hobnob, Inc
from the vimage project, as per plan established at devsummit 08/08:
http://wiki.freebsd.org/Image/Notes200808DevSummit
Introduce INIT_VNET_*() initializer macros, VNET_FOREACH() iterator
macros, and CURVNET_SET() context setting macros, all currently
resolving to NOPs.
Prepare for virtualization of selected SYSCTL objects by introducing a
family of SYSCTL_V_*() macros, currently resolving to their global
counterparts, i.e. SYSCTL_V_INT() == SYSCTL_INT().
Move selected #defines from sys/sys/vimage.h to newly introduced header
files specific to virtualized subsystems (sys/net/vnet.h,
sys/netinet/vinet.h etc.).
All the changes are verified to have zero functional impact at this
point in time by doing MD5 comparision between pre- and post-change
object files(*).
(*) netipsec/keysock.c did not validate depending on compile time options.
Implemented by: julian, bz, brooks, zec
Reviewed by: julian, bz, brooks, kris, rwatson, ...
Approved by: julian (mentor)
Obtained from: //depot/projects/vimage-commit2/...
X-MFC after: never
Sponsored by: NLnet Foundation, The FreeBSD Foundation
After I removed all the unit2minor()/minor2unit() calls from the kernel
yesterday, I realised calling minor() everywhere is quite confusing.
Character devices now only have the ability to store a unit number, not
a minor number. Remove the confusion by using dev2unit() everywhere.
This commit could also be considered as a bug fix. A lot of drivers call
minor(), while they should actually be calling dev2unit(). In -CURRENT
this isn't a problem, but it turns out we never had any problem reports
related to that issue in the past. I suspect not many people connect
more than 256 pieces of the same hardware.
Reviewed by: kib
When I changed kern_conf.c three months ago I made device unit numbers
equal to (unneeded) device minor numbers. We used to require
bitshifting, because there were eight bits in the middle that were
reserved for a device major number. Not very long after I turned
dev2unit(), minor(), unit2minor() and minor2unit() into macro's.
The unit2minor() and minor2unit() macro's were no-ops.
We'd better not remove these four macro's from the kernel, because there
is a lot of (external) code that may still depend on them. For now it's
harmless to remove all invocations of unit2minor() and minor2unit().
Reviewed by: kib
ng_apply_item(). There are possible (and I have got one) use-after-free
class panics because of it.
If hook is specified, require it to be valid at the apply time. The only
exceptions are the internal ng_con_part2(), ng_con_part3() and
ng_rmhook_part2() functions which are specially made to work with invalid
hooks.
virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
USB isochronous transfer support is required for Bluetooth SCO.
While i'm here change u_int to uint and update TODO.
This should produce no visible changes unless the device is
broken (or really old).
MFC after: 3 months
dispatched without Giant, and add NETISR_FORCEQUEUE, which allows specific
netisr handlers to always be dispatched via a queue (deferred). Mark the
usb and if_ppp netisr handlers as NETISR_FORCEQUEUE, and explicitly
acquire Giant in those handlers.
Previously, any netisr handler not marked NETISR_MPSAFE would necessarily
run deferred and with Giant acquired. This change removes Giant
scaffolding from the netisr infrastructure, but NETISR_FORCEQUEUE allows
non-MPSAFE handlers to continue to force deferred dispatch so as to avoid
lock order reversals between their acqusition of Giant and any calling
context.
It is likely we will be able to remove NETISR_FORCEQUEUE once
IFF_NEEDSGIANT is removed, as non-MPSAFE usb and if_ppp drivers will no
longer be supported.
Reviewed by: bz
MFC after: 1 month
X-MFC note: We can't remove NETISR_MPSAFE from stable/7 for KPI reasons,
but the rest can go back.
NET_NEEDS_GIANT. netatm has been disconnected from the build for ten
months in HEAD/RELENG_7. Specifics:
- netatm include files
- netatm command line management tools
- libatm
- ATM parts in rescue and sysinstall
- sample configuration files and documents
- kernel support as a module or in NOTES
- netgraph wrapper nodes for netatm
- ctags data for netatm.
- netatm-specific device drivers.
MFC after: 3 weeks
Reviewed by: bz
Discussed with: bms, bz, harti
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
rev. 1.149 rework.
It allows to save several percents of CPU time on SMP by using UMA's
internal per-CPU allocation limits instead of own global variable
each time updated with atomics.
Tested with: Netperf cluster
- reorder structures fields (XX_refs) a bit to group fields modified
same time together. According to my tests it gives up to 10%
SMP performance benefit on real workload due to reduced inter-CPU
cache trashing.
- change q_flags from long to int as long is not really needed there and
it's usage with atomics is argued by some people.
- move NGF_WORKQ flag into the separate field q_flags2 as it protected by
queue mutex instead of node writer protection used by the rest of flags.
- move nd_work queue entry to ng_queue structure to which it is more
related and make it STAILQ instead of TAILQ as now it is a classic FIFO.
- remove q_node pointer from ng_queue structure as it is not really needed.
- reimplement item queue using STAILQ instead of own equal implementation.
As soon as BT subsystem has own item queues using ng_item.el_next update
it also.
- change depth field in ng_item from uintptr_t to u_int. It was made
uintptr_t to keep ABI compatibility.
Reviewed by: julian, emax
Tested with: Netperf cluster
- Do not check destination hook presence, it will be done by netgraph.
- Use u_int instead of int in some places to simplify type conversions.
- Use NG_SEND_DATA_ONLY() macro instead of selfmade equivalent.
will never exit ngintr(), while there is some ready requests on the queue.
It was made years ago with hope of parallel queue processing by several
net threads. But even if we have several threads sometimes, we have no
rights to process queue in parallel as it will break original requests
serialization that is critically important for some setups.
of pptpgre and ksocket nodes for all calls between two peers. This patch
modifies node's API by adding new "session_%04x" hook names support, while
keeping backward compatibility.
Together with appropriate user-level support (by latest mpd5) it gives
huge performance benefits for case of multiple active calls between
two peers because of avoiding data duplication and extra socket processing.
On my benchmarks I have got more then 10 times speedup for the 200
simultaneous PPTP calls between two peers.
In conclusion, it allows now to build effective "clients <=> PAC <=> PNS"
setups.
Before this patch callback returned result of the last finished call chain.
Now it returns last nonzero result from all call chain results in this request.
As soon as this improvement gives reliable error reporting, it is now possible
to remove dirty workaround in ng_socket, made to return ENOBUFS error statuses
of request-response operations. That workaround was responsible for returning
ENOBUFS errors to completely unrelated requests working at the same time
on socket.
if netgraph reported error while delivering to destination.
Reset 'next send' counter to the last requested by peer on ack timeout
to resend all subsequest packets after lost one again without additional hints.
trashing and improve performance.
Remove waitflag argument from ng_ksocket_incoming2(), it means nothing
as function call was queued by netgraph.
Remove node validity check, as node validity guarantied by netgraph.
Update comments.