This uses the emuxkireg.h already used in the emu10k1
snd driver. Special thanks go to Alexander Motin as
he was able to find some errors and reverse engineer
some wrong values in the emuxkireg header.
The emu10kx driver is now free from the GPL.
PR: 153901
Tested by: mav, joel
Approved by: jhb (mentor)
MFC after: 2 weeks
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
other changes too).
(without any real order)
1. Use device_get_nameunit for mutex naming
2. Add timer for low-latency playback
3. Move most mixer controls from sysctls to mixer(8) controls.
This is a largest part of this patch.
4. Add analog/digital switch (as a temporary sysctl)
5. Get back support for low-bitrate playback (with help of (2))
6. Change locking for exclusive I/O. Writing to non-PTR register
is almost safe and does not need to be ordered with PTR operations.
7. Disable MIDI until we get it to detach properly and fix memory
managment problems.
8. Enable multichannel playback by default. It is as stable as
single-channel mode. Multichannel recording is still an
experimental feature.
9. Multichannel options can be changed by loader tunables.
10. Add a way to disable card from a loader tunable.
11. Add new PCI IDs.
12. Debugger settings are loader tunables now.
14. Remove some unused variables.
15. Mark pcm sub-devices MPSAFE.
16. Partially revert (bus_setup_intr -> snd_setup_intr) since it need
to be done independently
Submitted by: Yuriy Tsibizov (driver maintainer)
Approved by: re (bmah)
confusions and panic provided that the following conditions are met:
1) WITNESS is enabled (watch/trace).
2) Using modules, instead of statically linked (Not a strict
requirement, but easier to reproduce this way).
3) 2 or more modules share the same mtx type ("sound softc").
- They might share the same name (strcmp() == 0), but it always
point to different address.
4) Repetitive kldunload/load on any module that shares the same mtx
type (Not a strict requirement, but easier to reproduce this way).
Consider module A and module B:
- From enroll() - subr_witness.c:
* Load module A. Everything seems fine right now.
wA-w_refcount == 1 ; wA-w_name = "sound softc"
* Load module B.
* w->w_name == description will always fail.
("sound softc" from A and B point to different address).
* wA->w_refcount > 0 && strcmp(description, wA->w_name) == 0
* enroll() will return wA instead of returning (possibly unique)
wB.
wA->w_refcount++ , == 2.
* Unload module A, mtx_destroy(), wA->w_name become invalid,
but wA->w_refcount-- become 1 instead of 0. wA will not be
removed from witness list.
* Some other places call mtx_init(), iterating witness list,
found wA, failed on wA->w_name == description
* wA->w_refcount > 0 && strcmp(description, wA->w_name)
* Panic on strcmp() since wA->w_name no longer point to valid
address.
Note that this could happened in other places as well, not just sound
(eg. consider lots of drivers that share simmilar MTX_NETWORK_LOCK).
Solutions (for sound case):
1) Provide unique mtx type string for each mutex creation (chosen)
or
2) Put "sound softc" global variable somewhere and use it.
---snip---
New features:
1. Optional multichannel recording (32 channels on Live!, 64 channels
on Audigy).
All channels are 16bit/48000Hz/mono, format is fixed.
Half of them are copied from sound output, another half can be
used to record any data from DSP. What should be recorded is
hardcoded in DSP code. In this version it records dummy data, but
can be used to record all DSP inputs, for example..
Because there are no support of more-than-stereo sound streams
multichannell stream is presented as one 32(64)*48000 Hz 16bit mono
stream.
Channel map:
SB Live! (4.0/5.1)
offset (words) substream
0x00 Front L
0x01 Front R
0x02 Digital Front L
0x03 Digital Front R
0x04 Digital Center
0x05 Digital Sub
0x06 Headphones L
0x07 Headphones R
0x08 Rear L
0x09 Rear R
0x0A ADC (multi-rate recording) L
0x0B ADC (multi-rate recording) R
0x0C unused
0x0D unused
0x0E unused
0x0F unused
0x10 Analog Center (Live! 5.1) / dummy (Live! 4.0)
0x11 Analog Sub (Live! 5.1) / dummy (Live! 4.0)
0x12..-0x1F dummy
Audigy / Audigy 2 / Audigy 2 Value / Audigy 4
offset (words) substream
0x00 Digital Front L
0x01 Digital Front R
0x02 Digital Center
0x03 Digital Sub
0x04 Digital Side L (7.1 cards) / Headphones L (5.1 cards)
0x05 Digital Side R (7.1 cards) / Headphones R (5.1 cards)
0x06 Digital Rear L
0x07 Digital Rear R
0x08 Front L
0x09 Front R
0x0A Center
0x0B Sub
0x0C Side L
0x0D Side R
0x0E Rear L
0x0F Rear R
0x10 output to AC97 input L (muted)
0x11 output to AC97 input R (muted)
0x12 unused
0x13 unused
0x14 unused
0x15 unused
0x16 ADC (multi-rate recording) L
0x17 ADC (multi-rate recording) R
0x18 unused
0x19 unused
0x1A unused
0x1B unused
0x1C unused
0x1D unused
0x1E unused
0x1F unused
0x20..0x3F dummy
Fixes:
1. Do not assign negative values to variables used to index emu_cards
array. This array was never accessed when index is negative, but
Alexander (netchild@) told me that Coverity does not like it.
After this change emu_cards[0] should never be used to identify
valid sound card.
2. Fix off-by-one errors in interrupt manager. Add more checks there.
3. Fixes to sound buffering code now allows driver to use large playback
buffers.
4. Fix memory allocation bug when multichannel recording is not
enabled.
5. Fix interrupt timeout when recording with low bitrate (8kHz).
Hardware:
1. Add one more known Audigy ZS card to list. Add two cards with
PCI IDs betwen old known cards and new one.
Other changes:
1. Do not use ALL CAPS in messages.
Incomplete code:
1. Automute S/PDIF when S/PDIF signal is lost.
Tested on i386 only, gcc 3.4.6 & gcc41/gcc42 (syntax only).
---snip---
This commits enables a little bit of debugging output when the driver is
loaded as a module. I did a cross-build test for amd64.
The code has some style issues, this will be addressed later.
The multichannel recording part is some work in progress to allow playing
around with it until the generic sound code is better able to handle
multichannel streams.
This is supposed to fix
CID: 171187
Found by: Coverity Prevent
Submitted by: Yuriy Tsibizov <Yuriy.Tsibizov@gfk.ru>
is interaction between in-kernel sound buffer handling and hardware.
With small buffer, there are times when both harwdare reads and
kernel writes to the same buffer (it is only visible on slow machines, i
think). I'm digging in channel.c and buffer.c to find a solution that
allow use of large hardware buffers without sound lags - hardware can
handle buffers up to 32Mb."
Submitted by: Yuriy Tsibizov <Yuriy.Tsibizov@gfk.ru>
from a semantic point of view, but I notified the author of the driver
for confirmation. So far it at least fixes the build and should only
lead to not identifying or wrongly identifying a soundcard in the worst
case.
sound cards with optional pseudo-multichannel playback.
It's based on snd_emu10k1 sound driver. Single channel version is available
from audio/emu10kx port since some time.
The two new ALSA header files (GPLed), which contain Audigy 2 ("p16v") and
Audigy 2 Value ("p17v") specific interfaces, are latest versions from ALSA
Mercurial repository.
This is not connected to the build yet.
Submitted by: Yuriy Tsibizov <Yuriy.Tsibizov@gfk.ru>