print_AMD_foo() functions.
- Add a brand name table for the brand index provided on Intel CPU's in
%ebx after cpuid 1.
- For Intel CPUs, if we don't get a processor name from the extended cpuid
then use the brand index in cpuid_cpuinfo to pick a name from the brand
table and copy that name into cpu_brand.
- Replace the duplicated code to use the extended cpuid to replace
cpu_model with the processor name in the AMD and Transmeta sections of
printcpuinfo() with generic code that replaces cpu_model with
cpu_brand if cpu_brand is not an empty string. We also trim leading
spaces from cpu_brand prior to doing this since at least some processor
names (notably those of Intel CPUs) have leading spaces in the name.
- Give print_AMD_features() its own private regs[] array since
printcpuinfo() doesn't use the one it has anymore.
returned from cpuid 0x80000000.
- Add a cpu_brand char array to hold the processor name returned by
cpuid 0x80000002-0x80000004 on AMD, Intel, Transmeta, and possibly
other CPUs.
- Use cpuid to set cpu_exthigh and read the processor name if it is present
in identify_cpu().
in the mptable. The way this works is that we determine if the system
has hyperthreading and how many logical CPU's should be in each physical
CPU by using the information returned by cpuid. During the first pass of
the mptable, we build a bitmask of the APIC IDs of the CPUs listed in the
mptable. We then scan that bitmask to see if the CPUs are already listed
by the mptable, or if there are any APIC IDs already in use that would
conflict with the APIC IDs of the logical CPUs. If that test succeeds,
then we fixup the count of application processors. Later on during the
second pass of the mptable we create fake processor entries for logical
CPUs and add them to the system.
We only need this type of fixup hack when using the mptable to enumerate
CPUs. The ACPI MADT table properly enumerates all logical CPUs.
(show thread {address})
Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.
All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().
kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.
Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
of the `machdep.acpi_root' sysctl. This is required on ia64
because the root pointer hardly ever, if at all, lives in the
first MB of memory and also because scanning the first MB of
memory can cause machine checks.
This provides a save and reliable way for ACPI tools to work
with the tables if ACPI support is present in the kernel. On
ia64 ACPI is non-optional.
GENERIC. Each device can be re-enabled at startup time by unsetting the
disabled hint in the loader.
Requested by: mdodd
Approved by: re
Prodded by: rwatson
The correct range is [1...7] with Sunday=1, but we have been writing
[0...6] with Sunday=0.
The Soekris computers flagged the zero, zapped the date, so if you
rebooted your soekris on a sunday, it would come up with a wrong
date.
Bruce has a more extensive rework of this code, but we will stick with
the minimalist fix for now.
Spotted by: Soren Kristensen <soren@soekris.com>
Thanks to: Michael Sierchio <kudzu@tenebras.com>.
Confirmed by: bde
Approved by: re
to accomodate the new SSE/XMM floating point save/restore
instructions.
This commit is mostly from bde and includes some style nits.
Approved by: re (jhb)
pmap_remove_pte(). Use vm_page_sleep_if_busy() in
_pmap_unwire_pte_hold() so that the page queues lock is released
when sleeping.
Approved by: re (blanket)
to the sparc64 implementation. (Note: With modest effort on the alpha and
ia64 this function could migrate to the MI part of the kernel.)
Approved by: re (blanket)
i386 cpu_thread_exit(). This resulted in a panic with WITNESS
since we need to hold Giant to call kmem_free(), and we weren't
helding it anymore in cpu_thread_exit(). We now do this from a
new MD function, cpu_thread_dtor(), called by thread_dtor().
Approved by: re@
Suggested by: jhb
macro for use when parsing MADT tables, thus we always tried to set the
interrupt model to APIC. This proved to be harmful on UP machines with
IO APIC's (or for UP kernels on SMP machines) since the wrong interrupt
routing information would be returned.
Pointy hat to: jhb
Approved by: re (rwatson)
Previously these were libc functions but were requested to
be made into system calls for atomicity and to coalesce what
might be two entrances into the kernel (signal mask setting
and floating point trap) into one.
A few style nits and comments from bde are also included.
Tested on alpha by: gallatin