controller. Some testing has already been done, but its still greenish.
RAID's has to be setup via the BIOS on the SuperTrak, but all RAID
types are supported by the driver. The SuperTrak rebuilds failed arrays
on the fly and supports spare disks etc etc...
Add "device pst" to your config file to use.
As usual bugsreports, suggestions etc are welcome...
Development sponsored by: Advanis
Hardware donated by: Promise Inc.
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When fragmenting an IP datagram, invoke an appropriate MAC entry
point so that MAC labels may be copied (...) to the individual
IP fragment mbufs by MAC policies.
When IP options are inserted into an IP datagram when leaving a
host, preserve the label if we need to reallocate the mbuf for
alignment or size reasons.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the code managing IP fragment reassembly queues (struct ipq)
to invoke appropriate MAC entry points to maintain a MAC label on
each queue. Permit MAC policies to associate information with a queue
based on the mbuf that caused it to be created, update that information
based on further mbufs accepted by the queue, influence the decision
making process by which mbufs are accepted to the queue, and set the
label of the mbuf holding the reassembled datagram following reassembly
completetion.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When generating an IGMP message, invoke a MAC entry point to permit
the MAC framework to label its mbuf appropriately for the target
interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When generating an ARP query, invoke a MAC entry point to permit the
MAC framework to label its mbuf appropriately for the interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the MAC framework to label mbuf created using divert sockets.
These labels may later be used for access control on delivery to
another socket, or to an interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI LAbs
kernel access control.
Instrument connect(), listen(), and bind() system calls to invoke
MAC framework entry points to permit policies to authorize these
requests. This can be useful for policies that want to limit
the activity of processes involving particular types of IPC and
network activity.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label mbufs received via kernel tunnel device interfaces by invoking
appropriate MAC framework entry points.
Perform access control checks on out-going mbufs delivered via tunnel
interfaces by invoking appropriate MAC entry points:
NOTE: Currently the label for a tunnel interface is not derived from
the label of the process that opened the tunnel interface. It
probably should be.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label mbufs received via ethernet-based interfaces by invoking
appropriate MAC framework entry points.
Perform access control checks on out-going mbufs delivered via
ethernet-based interfaces by invoking appropriate MAC entry
points.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the interface management code so that MAC labels are
properly maintained on network interfaces (struct ifnet). In
particular, invoke entry points when interfaces are created and
removed. MAC policies may initialized the label interface based
on a variety of factors, including the interface name.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
When decompressing data from one mbuf into another mbuf, preserve the
mbuf label by copying it to the new mbuf.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke a MAC framework entry point to authorize reception of an
incoming mbuf by the BPF descriptor, permitting MAC policies to
limit the visibility of packets delivered to particular BPF
descriptors.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument BPF so that MAC labels are properly maintained on BPF
descriptors. MAC framework entry points are invoked at BPF
instantiation and allocation, permitting the MAC framework to
derive the BPF descriptor label from the credential authorizing
the device open. Also enter the MAC framework to label mbufs
created using the BPF device.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument UFS to support per-inode MAC labels. In particular,
invoke MAC framework entry points for generically supporting the
backing of MAC labels into extended attributes. This ends up
introducing new vnode operation vector entries point at the MAC
framework entry points, as well as some explicit entry point
invocations for file and directory creation events so that the
MAC framework can push labels to disk before the directory names
become persistent (this will work better once EAs in UFS2 are
hooked into soft updates). The generic EA MAC entry points
support executing with the file system in either single label
or multilabel operation, and will fall back to the mount label
if multilabel is not specified at mount-time.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument devfs to support per-dirent MAC labels. In particular,
invoke MAC framework when devfs directory entries are instantiated
due to make_dev() and related calls, and invoke the MAC framework
when vnodes are instantiated from these directory entries. Implement
vop_setlabel() for devfs, which pushes the label update into the
devfs directory entry for semi-persistant store. This permits the MAC
framework to assign labels to devices and directories as they are
instantiated, and export access control information via devfs vnodes.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
debugging levels to off by default. Now that debug levels can be
tweaked by sysctl we don't need to go through hoops to get the
different usb parts to produce debug data.
sysctl purposes. Also add two fields to struct vnode, v_cachedfs and
v_cachedid, which hold the vnode's device and file id and are filled in
by vn_open_cred() and vn_stat().
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on sockets.
In particular, invoke entry points during socket allocation and
destruction, as well as creation by a process or during an
accept-scenario (sonewconn). For UNIX domain sockets, also assign
a peer label. As the socket code isn't locked down yet, locking
interactions are not yet clear. Various protocol stack socket
operations (such as peer label assignment for IPv4) will follow.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on vnodes.
In particular, initialize the label when the vnode is allocated or
reused, and destroy the label when the vnode is going to be released,
or reused. Wow, an object where there really is exactly one place
where it's allocated, and one other where it's freed. Amazing.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke additional MAC entry points when an mbuf packet header is
copied to another mbuf: release the old label if any, reinitialize
the new header, and ask the MAC framework to copy the header label
data. Note that this requires a potential allocation operation,
but m_copy_pkthdr() is not permitted to fail, so we must block.
Since we now use interrupt threads, this is possible, but not
desirable.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on header
mbufs. In particular, invoke entry points during the two mbuf
header allocation cases, and the mbuf freeing case. Pass the "how"
argument at allocation time to the MAC framework so that it can
determine if it is permitted to block (as with policy modules),
and permit the initialization entry point to fail if it needs to
allocate memory but is not permitted to, failing the mbuf
allocation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement MAC framework access control entry points relating to
operations on mountpoints. Currently, this consists only of
access control on mountpoint listing using the various statfs()
variations. In the future, it might also be desirable to
implement checks on mount() and unmount().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
mount structures. In particular, invoke entry points for
intialization and destruction in various scenarios (root,
non-root). Also introduce an entry point in the boot procedure
following the mount of the root file system, but prior to the
start of the userland init process to permit policies to
perform further initialization.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement inter-process access control entry points for the MAC
framework. This permits policy modules to augment the decision
making process for process and socket visibility, process debugging,
re-scheduling, and signaling.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
process credentials. In particular, invoke entry points for
the initialization and destruction of struct ucred, the copying
of struct ucred, and permit the initial labels to be set for
both process 0 (parent of all kernel processes) and process 1
(parent of all user processes).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
the number of policy slots to 4.
(Having run a quick errand, time to start on phase 2 of the MAC
integration)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
frees it again. The idea was to perform M_WAITOK allocations in a
process context to reduce the risk of later interrupt-context
M_NOWAIT allocations failing, but in fact this code can be called
from contexts where it is not desirable to sleep (e.g. if_start
routines), so it causes lots of witness "could sleep" warnings.
kernel access control.
Label IP fragment reassembly queues, permitting security features to
be maintained on those objects. ipq_label will be used to manage
the reassembly of fragments into IP datagrams using security
properties. This permits policies to deny the reassembly of fragments,
as well as influence the resulting label of a datagram following
reassembly.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label network interface structures, permitting security features to
be maintained on those objects. if_label will be used to authorize
data flow using the network interface. if_label will be protected
using the same synchronization primitives as other mutable entries
in struct ifnet.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label BPF descriptor objects, permitting security features to be
maintained on those objects. bd_label will be used to authorize
data flow from network interfaces to user processes. BPF
labels are protected using the same synchronization model as other
mutable data in the BPF descriptor.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Replace 'void *' with 'struct mac *' now that mac.h is in the base
tree. The current POSIX.1e-derived userland MAC interface is
schedule for replacement, but will act as a functional placeholder
until the replacement is done. These system calls allow userland
processes to get and set labels on both the current process, as well
as file system objects and file descriptor backed objects.
access control.
Label socket IPC objects, permitting security features to be maintained
at the granularity of the socket. Two labels are stored for each
socket: the label of the socket itself, and a cached peer label
permitting interogation of the remote endpoint. Since socket locking
is not yet present in the base tree, these objects are not locked,
but are assumed to follow the same semantics as other modifiable
entries in the socket structure.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Label pipe IPC objects, permitting security information to be
maintained at the granularity of the pipe object. The label is
shared between the two pipe endpoints in the style of the
pipe mutex, and is maintained using similar conventions. The
label is protected by the pipe mutex.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
access control.
Label process credentials, permitting security information to be
maintained at the granularity of processes and cached credential
objects. cr_label follows the semantics of other entries in struct
ucred: when a credential is exclusively referenced, it may be
modified. Otherwise, it must be treated as immutable. As with
other interesting entries in struct ucred, failing to use the
documented credential management APIs (such as crcopy, crdup, ...)
can result in data corruption or incorrect behavior.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Label file system mount points, permitting security information to be
maintained at the granularity of the file system. Two labels are
currently maintained: a security label for the mount itself, and
a default label for objects in the file system (in particular, for
file systems not supporting per-vnode labeling directly).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the operating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Introduce two node vnode operations required to support MAC. First,
VOP_REFRESHLABEL(), which will be invoked by callers requiring that
vp->v_label be sufficiently "fresh" for access control purposes.
Second, VOP_SETLABEL(), which be invoked by callers requiring that
the passed label contents be updated. The file system is responsible
for updating v_label if appropriate in coordination with the MAC
framework, as well as committing to disk. File systems that are
not MAC-aware need not implement these VOPs, as the MAC framework
will default to maintaining a single label for all vnodes based
on the label on the file system mount point.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Label vnodes, permitting security information to maintained at the
granularity of the individual file, directory (et al). This data is
protected by the vnode lock and may be read only when holding a shared
lock, or modified only when holding an exclusive lock. Label
information may be considered either the primary copy, or a cached
copy. Individual file systems or kernel services may use the
VCACHEDLABEL flag for accounting purposes to determine which it is.
New VOPs will be introduced to refresh this label on demand, or to
set the label value.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Label mbuf's with packet header data, permitting in-flight datagrams
to be labeled in the TrustedBSD MAC implementation. Add a questionable
recursive #include of sys/mac.h to maintain the current API for
applications and kernel code including mbuf.h to get 'struct mbuf'
definition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Include files to declare MAC userland interface (mac.h), MAC subsystem
entry points (mac.h), and MAC policy entry points (mac_policy.h). These
files define the interface between the kernel and the MAC framework,
and between the MAC framework and each registered policy module. These
APIs and ABIs may not be assumed to be stable until following FreeBSD
5.1-RELEASE.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
While I don't think this is the best solution, it certainly is the
fastest and in trying to find bottlenecks in network related code
I want this out of the way, so that I don't have to think about it.
What this means, for mbuf clusters anyway is:
- one less malloc() to do for every cluster allocation (replaced with
a relatively quick calculation + assignment)
- no more free() in the cluster free case (replaced with empty space) :-)
This can offer a substantial throughput improvement, but it may not for
all cases. Particularly noticable for larger buffer sends/recvs.
See http://people.freebsd.org/~bmilekic/code/measure2.txt for a rough
idea.
function. This permits conditionally compiled extensions to the
packet header copying semantic, such as extensions to copy MAC
labels.
Reviewed by: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
has gone away instead of spinning in the interrupt handler. This stops
my machine from hanging when I eject a rl(4)-based cardbus card.
Reviewed by: imp
with a general purpose front end entry point for user applications
to invoke. The MAC framework will route the system call to the
appropriate policy by name.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
special actions for safety. One of these is to make sure that file descriptors
0..2 are in use, by opening /dev/null for those that are not already open.
Another is to close any file descriptors 0..2 that reference procfs. However,
these checks were made out of order, so that it was still possible for a
set-user-ID or set-group-ID process to be started with some of the file
descriptors 0..2 unused.
Submitted by: Georgi Guninski <guninski@guninski.com>
is that some cards built around fm801 chip have the same device ID, only
have radio tuner onboard, but no sound capabilities. Therefore, with such
card inserted and `device pcm' in kernel the user has a big problem, as
the fm801 driver effectively hangs the machine when trying to initialise
nonexistent ac97 codecs (it does 500 retries with 1 second interval!).
It would be better if MediaForte's engeneers were smart enough to put
different device ID into such cards, but it isn't an option.
MFC after: 2 weeks
be swapped out. Do not put such the thread directly back to the run
queue.
Spotted by: David Xu <davidx@viasoft.com.cn>
While I am here, s/PS_TIMEOUT/TDF_TIMEOUT/.
vm_page_sleep_busy() with vm_page_sleep_if_busy(). At the same time,
increase the scope of the page queues lock. (This should significantly
reduce the locking overhead in vm_object_page_remove().)
o Apply some style fixes.
swapped in, we do not have to ask for the scheduler thread to do
that.
- Assert that a process is not swapped out in runq functions and
swapout().
- Introduce thread_safetoswapout() for readability.
- In swapout_procs(), perform a test that may block (check of a
thread working on its vm map) first. This lets us call swapout()
with the sched_lock held, providing a better atomicity.