references to them.
The change a couple of days ago to ignore these numbers in statically
configured vfsconf structs was slightly premature because the cd9660,
cfs, devfs, ext2fs, nfs vfs's still used MOUNT_* instead of the number
in their vfsconf struct.
device drivers about sectors no longer in use.
Device-drivers receive the call through d_strategy, if they have
D_CANFREE in d_flags.
This allows flash based devices to erase the sectors and avoid
pointlessly carrying them around in compactions.
Reviewed by: Kirk Mckusick, bde
Sponsored by: M-Systems (www.m-sys.com)
clustering is obsolescent technology so hardly anyone noticed. On
a DORS 32160 SCSI drive with 4 tags, read clustering makes very
little difference even for huge sequential reads. However, on a
ZIP SCSI drive with 0 tags, the minimum overhead per block is about
40 msec, so very large clusters must be used to get anywhere near
the maximum transfer rate. Using clusters consisting of 1 8K block
reduces the transfer rate to about 250K/sec. Under msdosfs, missing
read clustering is normal and a cluster size of 1 512 byte block
reduces the transfer rate to about 25K/sec.
Broken in: rev.1.18
formats and args to match. Fixed old printf format errors (all related;
most were hidden by calling printf indirectly).
This change somehow avoids compiler bugs for 64-bit longs on i386's,
although it increases the number of 64-bit calculations.
respectively. Most of the longs should probably have been
u_longs, but this changes is just to prevent warnings about
casts between pointers and integers of different sizes, not
to fix poorly chosen types.
as the value in b_vp is often not really what you want.
(and needs to be frobbed). more cleanups will follow this.
Reviewed by: Bruce Evans <bde@freebsd.org>
as possible (when the inode is reclaimed). Temporarily only do
this if option UFS_LAZYMOD configured and softupdates aren't enabled.
UFS_LAZYMOD is intentionally left out of /sys/conf/options.
This is mainly to avoid almost useless disk i/o on battery powered
machines. It's silly to write to disk (on the next sync or when the
inode becomes inactive) just because someone hit a key or something
wrote to the screen or /dev/null.
PR: 5577
Previous version reviewed by: phk
in ufs_setattr() so that there is no need to pass timestamps to
UFS_UPDATE() (everything else just needs the current time). Ignore
the passed-in timestamps in UFS_UPDATE() and always call ufs_itimes()
(was: itimes()) to do the update. The timestamps are still passed
so that all the callers don't need to be changed yet.
that had an inode that has not yet been written to disk, when the inode of the
new file is also not yet written to disk, and your old directory entry is not
yet on disk but you need to remove it and the new name exists in memory
but has been deleted but the transaction to write the deleted name to disk
exists and has not yet been cancelled by the request to delete the non
existant name. I don't know how kirk could have missed such a glaring
problem for so long. :-) Especially since the inconsitency survived on
the disk for a whole 4 second on average before being fixed by other code.
This was not a crashing bug but just led to filesystem inconsitencies
if you crashed.
Submitted by: Kirk McKusick (mckusick@mckusick.com)
(doingdirectory && !newparent) case of ufs_rename().
rename("D1/X/", "D2/Y/") gives a wrong link count for D2.
Submitted by: Bruce Evans <bde@zeta.org.au>
Reviewed by: Kirk McKusick <mckusick@McKusick.COM>
is now ignored for special files, so that mounting root with option
noatime doesn't break reporting of idle times in programs like `w'.
The problem of execessive disk updates just to stamp atimes will be
handled for special files by only writing atimes to disk when inodes
become active. This works well because special files are relatively
uncommon and their atimes are even more disposable at panic time than
regular files' atimes.
1. mark atimes and mtimes of special files and fifos for update upon
successful completion of non-null i/o, not at the beginning of the
syscall.
2. never update file times for readonly filesystems. They were updated
for stats and closes but not for syncs. The updates were of course
only in-core and were thrown away when the inode was uncached, so
the times sometimes appeared to go backwards.
Improved comments in code related to (1) (mostly by removing them).
Unmacroized ITIMES(). The test in (2) bloated it even more. Don't
call getmicrotime() in the function version of it when we only need
the time in seconds.
---------
Make callers of namei() responsible for releasing references or locks
instead of having the underlying filesystems do it. This eliminates
redundancy in all terminal filesystems and makes it possible for stacked
transport layers such as umapfs or nullfs to operate correctly.
Quality testing was done with testvn, and lat_fs from the lmbench suite.
Some NFS client testing courtesy of Patrik Kudo.
vop_mknod and vop_symlink still release the returned vpp. vop_rename
still releases 4 vnode arguments before it returns. These remaining cases
will be corrected in the next set of patches.
---------
Submitted by: Michael Hancock <michaelh@cet.co.jp>
Reverse the VFS_VRELE patch. Reference counting of vnodes does not need
to be done per-fs. I noticed this while fixing vfs layering violations.
Doing reference counting in generic code is also the preference cited by
John Heidemann in recent discussions with him.
The implementation of alternative vnode management per-fs is still a valid
requirement for some filesystems but will be revisited sometime later,
most likely using a different framework.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
This code will be turned on with the TWO options
DEVFS and SLICE. (see LINT)
Two labels PRE_DEVFS_SLICE and POST_DEVFS_SLICE will deliniate these changes.
/dev will be automatically mounted by init (thanks phk)
on bootup. See /sys/dev/slice/slice.4 for more info.
All code should act the same without these options enabled.
Mike Smith, Poul Henning Kamp, Soeren, and a few dozen others
This code does not support the following:
bad144 handling.
Persistance. (My head is still hurting from the last time we discussed this)
ATAPI flopies are not handled by the SLICE code yet.
When this code is running, all major numbers are arbitrary and COULD
be dynamically assigned. (this is not done, for POLA only)
Minor numbers for disk slices ARE arbitray and dynamically assigned.
- restored async mount support. The first entry in a block is still
always written synchronously, although it probably shouldn't be in
the async case.
- restored use of BWRITE() instead of bowrite() for the DOWHITEOUT
case, although bowrite() is probably better.
Broken by: merge of softdep changes (rev.1.22).
Found by: lmbench2 delete-file benchmarks.
(because we can :-). This means you can open a link file (or pseudo-file
in the case of short links where the data is stored in the inode rather
than disk blocks) and read the contents.
However, trap any writes from the user as it's difficult to do the right
thing in all cases. A link may be short and the user may be trying to
extend it beyond the limit and so on. Although.. being able to re-target
a symlink without deleting it first might have been nice.
This stuff is a bit perverse since symlink() and readlink() calls can
end up actually being implemented as read/write vnode ops.
Reviewed by: phk
* Figure out UTC relative to boottime. Four new functions provide
time relative to boottime.
* move "runtime" into struct proc. This helps fix the calcru()
problem in SMP.
* kill mono_time.
* add timespec{add|sub|cmp} macros to time.h. (XXX: These may change!)
* nanosleep, select & poll takes long sleeps one day at a time
Reviewed by: bde
Tested by: ache and others
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.
Most uses of time.tv_sec now uses the new variable time_second instead.
gettime() changed to getmicrotime(0.
Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).
A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.
Add a new nfs_curusec() function.
Mark a couple of bogosities involving the now disappeard time variable.
Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.
Change profiling in ncr.c to use ticks instead of time. Resolution is
the same.
Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.
Reviewed by: bde
softdep mode could only be activated on the initial mount of a filesystem
and then only if it was a read-write mount. A 'mount -r' (as done in the
rootfs mount) followed by a 'mount -u' to convert to read-write didn't
start softdep mode.
They are atomic, but return in essence what is in the "time" variable.
gettime() is now a macro front for getmicrotime().
Various patches to use the two new functions instead of the various
hacks used in their absence.
Some puntuation and grammer patches from Bruce.
A couple of XXX comments.
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
a complement to all ops that return a vpp, VFS_VRELE. This is
initially only for file systems that implement the following ops
that do a WILLRELE:
vop_create, vop_whiteout, vop_mknod, vop_remove, vop_link,
vop_rename, vop_mkdir, vop_rmdir, vop_symlink
This is initial DNA that doesn't do anything yet. VFS_VRELE is
implemented but not called.
A default vfs_vrele was created for fs implementations that use the
standard vnode management routines.
VFS_VRELE implementations were made for the following file systems:
Standard (vfs_vrele)
ffs mfs nfs msdosfs devfs ext2fs
Custom
union umapfs
Just EOPNOTSUPP
fdesc procfs kernfs portal cd9660
These implementations may change as VOP changes are implemented.
In the next phase, in the vop implementations calls to vrele and the vrele
part of vput will be moved to the top layer vfs_vnops and made visible
to all layers. vput will be replaced by unlock in these cases. Unlocking
will still be done in the per fs layer but the refcount decrement will be
triggered at the top because it doesn't hurt to hold a vnode reference a
little longer. This will have minimal impact on the structure of the
existing code.
This will only be done for vnode arguments that are released by the various
fs vop implementations.
Wider use of VFS_VRELE will likely require restructuring of the code.
Reviewed by: phk, dyson, terry et. al.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
These diffs implement the first stage of a VOP_{GET|PUT}PAGES pushdown
for local media FS's.
See ffs_putpages in /sys/ufs/ufs/ufs_readwrite.c for implementation
details for generic *_{get|put}pages for local media FS's. Support
is trivial to add for any FS that formerly relied on the default
behaviour of the vnode_pager in in EOPNOTSUPP cases (just copy the
ffs_getpages() code for the FS in question's *_{get|put}pages).
Obviously, it would be better if each local media FS implemented a
more optimal method, instead of calling an exported interface from
the /sys/vm/vnode_pager.c, but this is a necessary first step in
getting the FS's to a point where they can be supplied with better
implementations on a case-by-case basis.
Obviously, the cd9660_putpages() can be rather trivial (since it
is a read-only FS type 8-)).
A slight (temporary) modification is made to print a diagnostic message
in the case where the underlying filesystem attempts to engage in the
previous behaviour. Failure is likely to be ungraceful.
Submitted by: terry@freebsd.org (Terry Lambert)
There is now less need for the vfs.usermount sysctl. msdosfs already
has this change, modulo a missing LK_RETRY, via NetBSD. At least
ext2fs is missing this and many other changes from Lite2.
Obtained from: Lite2
of the various ad-hoc schemes.
2) When bringing in UPAGES, the pmap code needs to do another vm_page_lookup.
3) When appropriate, set the PG_A or PG_M bits a-priori to both avoid some
processor errata, and to minimize redundant processor updating of page
tables.
4) Modify pmap_protect so that it can only remove permissions (as it
originally supported.) The additional capability is not needed.
5) Streamline read-only to read-write page mappings.
6) For pmap_copy_page, don't enable write mapping for source page.
7) Correct and clean-up pmap_incore.
8) Cluster initial kern_exec pagin.
9) Removal of some minor lint from kern_malloc.
10) Correct some ioopt code.
11) Remove some dead code from the MI swapout routine.
12) Correct vm_object_deallocate (to remove backing_object ref.)
13) Fix dead object handling, that had problems under heavy memory load.
14) Add minor vm_page_lookup improvements.
15) Some pages are not in objects, and make sure that the vm_page.c can
properly support such pages.
16) Add some more page deficit handling.
17) Some minor code readability improvements.
If you want to play with it, you can find the final version of the
code in the repository the tag LFS_RETIREMENT.
If somebody makes LFS work again, adding it back is certainly
desireable, but as it is now nobody seems to care much about it,
and it has suffered considerable bitrot since its somewhat haphazard
integration.
R.I.P
This introduce an xxxFS_BOOT for each of the rootable filesystems.
(Presently not required, but encouraged to allow a smooth move of option *FS
to opt_dontuse.h later.)
LFS is temporarily disabled, and will be re-enabled tomorrow.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
config option in pmap. Fix a problem with faulting in pages. Clean-up
some loose ends in swap pager memory management.
The system should be much more stable, but all subtile bugs aren't fixed yet.
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.