Mainly focus on files that use BSD 3-Clause license.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
Renumber cluase 4 to 3, per what everybody else did when BSD granted
them permission to remove clause 3. My insistance on keeping the same
numbering for legal reasons is too pedantic, so give up on that point.
Submitted by: Jan Schaumann <jschauma@stevens.edu>
Pull Request: https://github.com/freebsd/freebsd/pull/96
running time for a full fsck. It also reduces the random access time
for large files and speeds the traversal time for directory tree walks.
The key idea is to reserve a small area in each cylinder group
immediately following the inode blocks for the use of metadata,
specifically indirect blocks and directory contents. The new policy
is to preferentially place metadata in the metadata area and
everything else in the blocks that follow the metadata area.
The size of this area can be set when creating a filesystem using
newfs(8) or changed in an existing filesystem using tunefs(8).
Both utilities use the `-k held-for-metadata-blocks' option to
specify the amount of space to be held for metadata blocks in each
cylinder group. By default, newfs(8) sets this area to half of
minfree (typically 4% of the data area).
This work was inspired by a paper presented at Usenix's FAST '13:
www.usenix.org/conference/fast13/ffsck-fast-file-system-checker
Details of this implementation appears in the April 2013 of ;login:
www.usenix.org/publications/login/april-2013-volume-38-number-2.
A copy of the April 2013 ;login: paper can also be downloaded
from: www.mckusick.com/publications/faster_fsck.pdf.
Reviewed by: kib
Tested by: Peter Holm
MFC after: 4 weeks
extended using growfs(8). The problem here is that geom_label checks if
the filesystem size recorded in UFS superblock is equal to the provider
(i.e. device) size. This check cannot be removed due to backward
compatibility. On the other hand, in most cases growfs(8) cannot set
fs_size in the superblock to match the provider size, because, differently
from newfs(8), it cannot recompute cylinder group sizes.
To fix this problem, add another superblock field, fs_providersize, used
only for this purpose. The geom_label(4) will attach if either fs_size
(filesystem created with newfs(8)) or fs_providersize (filesystem expanded
using growfs(8)) matches the device size.
PR: kern/165962
Reviewed by: mckusick
Sponsored by: FreeBSD Foundation
the now default 32K/4K filesystem the same as the number of inodes in
the previously default 16K/2K filesystem.
PR: bin/16265
Reported by: Olivier Cochard-Labbe <olivier@cochard.me>
MFC: 4 weeks (9 is the only affected branch)
These tools declare global variables without using the static keyword,
even though their use is limited to a single C-file, or without placing
an extern declaration of them in the proper header file.
16K to 32K and the default fragment size from 2K to 4K.
The rational is that most disks are now running with 4K
sectors. While they can (slowly) simulate 512-byte sectors
by doing a read-modify-write, it is desirable to avoid this
functionality. By raising the minimum filesystem allocation
to 4K, the filesystem will never trigger the small sector
emulation.
Also, the growth of disk sizes has lead us to double the
default block size about every ten years. The rise from 8K
to 16K blocks was done in 2001. So, by the 10-year metric,
the time has come for 32K blocks.
Discussed at: May 2011 BSDCan Developer Summit
Reference: http://wiki.freebsd.org/201105DevSummit/FileSystems
inodes by cutting back on the number of inodes per cylinder group if
necessary to stay under the limit. For a default (16K block) file
system, this limit begins to take effect for file systems above 32Tb.
This fix is in addition to -r203763 which corrected a problem in the
kernel that treated large inode numbers as negative rather than unsigned.
For a default (16K block) file system, this bug began to show up at a
file system size above about 16Tb.
Reported by: Scott Burns, John Kilburg, Bruce Evans
Followup by: Jeff Roberson
PR: 133980
MFC after: 2 weeks
want to prepare disk images for emulators (though 'makefs' in port
can do something similar).
This relies on:
+ minor changes to pass the consistency checks even when working on a file;
+ an additional option, '-p partition' , to specify the disk partition to
initialize;
+ some changes on the I/O routines to deal with partition offsets.
The latter was a bit tricky to implement, see the details in newfs.h:
in newfs, I/O is done through libufs which assumes that the file
descriptor refers to the whole partition. Introducing support for
the offset in libufs would require a non-backward compatible change
in the library, to be dealt with a version bump or with symbol
versioning.
I felt both approaches to be overkill for this specific application,
especially because there might be other changes to libufs that might
become necessary in the near future.
So I used the following trick:
- read access is always done by calling bread() directly, so we just add
the offset in the (few) places that call bread();
- write access is done through bwrite() and sbwrite(), which in turn
calls bwrite(). To avoid rewriting sbwrite(), we supply our own version
of bwrite() here, which takes precedence over the version in libufs.
MFC after: 4 weeks
Implement -E option which will erase the filesystem sectors before
making the new filesystem. Reserved space in front of the superblock
(bootcode) is not erased.
NB: Erasing can take as long time as writing every sector sequentially.
This is relevant for all flash based disks which use wearlevelling.
Add a new option to newfs(8), -r, to specify reserved space at the
end of the device. It can be useful, e.g., when the device is to
become a member of a gmirror array later w/o losing the file system
on it.
Document the new option in the manpage.
While I'm here, improve error handling for -s option, which is
syntactically similar to -r; and document the fact that -s0 selects
the default fs size explicitly, which can be useful, e.g., in a
menu-based wrapper around newfs(8) requiring some value be entered
for the fs size.
Also fix a small typo in the help line for -s (missing space).
Idea and initial implementation by: marck
Discussed on: -fs
Critical review by: bde
Tested with: cmp(1)
the new filesystem. This is intended for memory and vnode filesystems
that will never be fsck'ed or dumped.
Obtained from: St. Bernard Software RAPID
MFC after: 2 weeks
permits users of newfs to set the multilabel flag on UFS1 and UFS2
file systems from inception without using tunefs.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, McAfee Research
version of such. Differences in filesystems generated were found to be
from 1) sbwrite with the "all" parameter 2) removal of writecache. The
sbwrite call was made to perform as the original version, and otherwise
this was checked against a version of newfs with the write cache removed.
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
Use only one filedescriptor. Open in R/O or R/W based in the '-N' option.
Make the filedescriptor a global variable instead of passing it around
as semi-global variable(s).
Remove the undocumented ability to specify type without '-T' option.
Replace fatal() with straight err(3)/errx(3). Save calls to strerror()
where applicable. Loose the progname variable.
Get the sense of the cpgflag test correct so we only issue warnings if
people specify cpg and can't get that. It can be argued that this
should be an error.
Remove the check to see if the disk is mounted: Open for writing
would fail if it were mounted.
Attempt to get the sectorsize and mediasize with the generic disk
ioctls, fall back to disklabel and /etc/disktab as we can.
Notice that on-disk labels still take precedence over /etc/disktab,
this is probably wrong, but not as wrong as the entire concept of
/etc/disktab is.
Sponsored by: DARPA & NAI Labs.
particular as there may not be one. Remove #if 0'ed code which might
mislead people to think otherwise.
unifdef -ULOSTDIR, fsck can make lost+found on the fly.
Sponsored by: DARPA & NAI Labs
diskdrives do neither need nor want:
-O create a 4.3BSD format filesystem
-d rotational delay between contiguous blocks
-k sector 0 skew, per track
-l hardware sector interleave
-n number of distinguished rotational positions
-p spare sectors per track
-r revolutions/minute
-t tracks/cylinder
-x spare sectors per cylinder
No change in the produced filesystem image unless one or more of
these options were used.
Approved by: mckusick
Add a couple of simple regression tests accessible with "make test", they
depend on the md(4) driver.
FYI I have also tried running the test against a week old newfs and it
passed.