changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
possible for do_execve() to call exit1() rather than returning. As a
result, the sequence "allocate memory; call kern_execve; free memory"
can end up leaking memory.
This commit documents this astonishing behaviour and adds a call to
exec_free_args() before the exit1() call in do_execve(). Since all
the users of kern_execve() in the tree use exec_free_args() to free
the command-line arguments after kern_execve() returns, this should
be safe, and it fixes the memory leak which can otherwise occur.
Submitted by: Peter Holm
MFC after: 3 days
Security: Local denial of service
to avoid touching pageable memory while holding a mutex.
Simplify argument list replacement logic.
PR: kern/84935
Submitted by: "Antoine Pelisse" apelisse AT gmail.com (in a different form)
MFC after: 3 days
- pmcstat(8) gprof output mode fixes:
lib/libpmc/pmclog.{c,h}, sys/sys/pmclog.h:
+ Add a 'is_usermode' field to the PMCLOG_PCSAMPLE event
+ Add an 'entryaddr' field to the PMCLOG_PROCEXEC event,
so that pmcstat(8) can determine where the runtime loader
/libexec/ld-elf.so.1 is getting loaded.
sys/kern/kern_exec.c:
+ Use a local struct to group the entry address of the image being
exec()'ed and the process credential changed flag to the exec
handling hook inside hwpmc(4).
usr.sbin/pmcstat/*:
+ Support "-k kernelpath", "-D sampledir".
+ Implement the ELF bits of 'gmon.out' profile generation in a new
file "pmcstat_log.c". Move all log related functions to this
file.
+ Move local definitions and prototypes to "pmcstat.h"
- Other bug fixes:
+ lib/libpmc/pmclog.c: correctly handle EOF in pmclog_read().
+ sys/dev/hwpmc_mod.c: unconditionally log a PROCEXIT event to all
attached PMCs when a process exits.
+ sys/sys/pmc.h: correct a function prototype.
+ Improve usage checks in pmcstat(8).
Approved by: re (blanket hwpmc)
- Implement sampling modes and logging support in hwpmc(4).
- Separate MI and MD parts of hwpmc(4) and allow sharing of
PMC implementations across different architectures.
Add support for P4 (EMT64) style PMCs to the amd64 code.
- New pmcstat(8) options: -E (exit time counts) -W (counts
every context switch), -R (print log file).
- pmc(3) API changes, improve our ability to keep ABI compatibility
in the future. Add more 'alias' names for commonly used events.
- bug fixes & documentation.
file's access time should be updated when it gets executed. A while
ago the mechanism used to exec was changed to use a more mmap based
mechanism and this behavior was broken as a side-effect of that.
A new vnode flag is added that gets set when the file gets executed,
and the VOP_SETATTR() vnode operation gets called. The underlying
filesystem is expected to handle it based on its own semantics, some
filesystems don't support access time at all. Those that do should
handle it in a way that does not block, does not generate I/O if possible,
etc. In particular vn_start_write() has not been called. The UFS code
handles it the same way as it would normally handle the access time if
a file was read - the IN_ACCESS flag gets set in the inode but no other
action happens at this point. The actual time update will happen later
during a sync (which handles all the necessary locking).
Got me into this: cperciva
Discussed with: a lot with bde, a little with kan
Showed patches to: phk, jeffr, standards@, arch@
Minor discussion on: arch@
PAGE_SIZE.
Unlike originator of the PR suggests retain MAXSHELLCMDLEN definition
(he has been proposing to replace it with PAGE_SIZE everywhere), not only
this reduced the diff significantly, but prevents code obfuscation and also
allows to increase/decrease this parameter easily if needed.
PR: kern/64196
Submitted by: Magnus Bäckström <b@etek.chalmers.se>
copies arguments into the kernel space and one that operates
completely in the kernel space;
o use kernel-only version of execve(2) to kill another stackgap in
linuxlator/i386.
Obtained from: DragonFlyBSD (partially)
MFC after: 2 weeks
for ensuring that a process' filedesc is not shared with anybody.
Use it in the two places which previously had private implmentations.
This collects all fd_refcnt handling in kern_descrip.c
Use this in all the places where sleeping with the lock held is not
an issue.
The distinction will become significant once we finalize the exact
lock-type to use for this kind of case.
sysctl routines and state. Add some code to use it for signalling the need
to downconvert a data structure to 32 bits on a 64 bit OS when requested by
a 32 bit app.
I tried to do this in a generic abi wrapper that intercepted the sysctl
oid's, or looked up the format string etc, but it was a real can of worms
that turned into a fragile mess before I even got it partially working.
With this, we can now run 'sysctl -a' on a 32 bit sysctl binary and have
it not abort. Things like netstat, ps, etc have a long way to go.
This also fixes a bug in the kern.ps_strings and kern.usrstack hacks.
These do matter very much because they are used by libc_r and other things.
all other threads to suicide, problem is execve() could be failed, and
a failed execve() would change threaded process to unthreaded, this side
effect is unexpected.
The new code introduces a new single threading mode SINGLE_BOUNDARY, in
the mode, all threads should suspend themself at user boundary except
the singler. we can not use SINGLE_NO_EXIT because we want to start from
a clean state if execve() is successful, suspending other threads at unknown
point and later resuming them from there and forcing them to exit at user
boundary may cause the process to start from a dirty state. If execve() is
successful, current thread upgrades to SINGLE_EXIT mode and forces other
threads to suicide at user boundary, otherwise, other threads will be resumed
and their interrupted syscall will be restarted.
Reviewed by: julian
Better to kill all other threads than to panic the system if 2 threads call
execve() at the same time. A better fix will be committed later.
Note that this only affects the case where the execve fails.
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
a more complete subsystem, and removes the knowlege of how things are
implemented from the drivers. Include locking around filter ops, so a
module like aio will know when not to be unloaded if there are outstanding
knotes using it's filter ops.
Currently, it uses the MTX_DUPOK even though it is not always safe to
aquire duplicate locks. Witness currently doesn't support the ability
to discover if a dup lock is ok (in some cases).
Reviewed by: green, rwatson (both earlier versions)
somewhat clearer, but more importantly allows for a consistent naming
scheme for suser_cred flags.
The old name is still defined, but will be removed in a few days (unless I
hear any complaints...)
Discussed with: rwatson, scottl
Requested by: jhb
pmap_remove_pages(). (The implementation of pmap_remove_pages() is
optional. If pmap_remove_pages() is unimplemented, the acquisition and
release of the page queues lock is unnecessary.)
Remove spl calls from the alpha, arm, and ia64 pmap_remove_pages().
of not clearing the flags for execv() syscall will result that a new
program runs in KSE thread mode without enabling it.
Submitted by: tjr
Modified by: davidxu
in the two consumers that need it.. processes using AIO and netncp.
Update docs. Say that process_exec is called with Giant, but not to
depend on it. All our consumers can handle it without Giant.
- no longer serialize on Giant for thread_single*() and family in fork,
exit and exec
- thread_wait() is mpsafe, assert no Giant
- reduce scope of Giant in exit to not cover thread_wait and just do
vm_waitproc().
- assert that thread_single() family are not called with Giant
- remove the DROP/PICKUP_GIANT macros from thread_single() family
- assert that thread_suspend_check() s not called with Giant
- remove manual drop_giant hack in thread_suspend_check since we know it
isn't held.
- remove the DROP/PICKUP_GIANT macros from thread_suspend_check() family
- mark kse_create() mpsafe
Conforming POSIX application should do by disallowing the argv
argument to be NULL.
PR: kern/33738
Submitted by: Marc Olzheim, Serge van den Boom
OK'ed by: nectar
kernel. I'm not happy with it yet - refinements are to come.
This hack allows the kern.ps_strings and kern.usrstack sysctls to respond
to a 32 bit request, such as those coming from emulated i386 binaries.
function back to near the beginning of the file. Rev.1.194 moved it into
the middle of auxiliary functions following kern_execve(). Moved the
__mac_execve() syscall function up together with execve(). It was new in
rev1.1.196 and perfectly misplaced after execve().
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories