o do not use the in* and out* functions. These functions are used by
legacy drivers and thus must have ia32 compatible behaviour. Hence,
they need to have fences. Using these functions for newbus would
then pessimize performance.
o remove the conditional compilation of PIO and/or MEMIO support. It's
a PITA without having any significant benefit. We always support them
both. Since there are no I/O ports on ia64 (they are simulated by the
chipset by translating memory mapped I/O to predefined uncacheable
memory regions) the only difference between PIO and MEMIO is in the
address calculation. There should be enough ILP that can be exploited
here that making these computations compile-time conditional is not
worth it. We now also don't use the read* and write* functions.
o Add the missing *_8 variants. They were missing, although not missed.
It's for completeness.
o Do not add the fences that were present in the low-level support
functions here. We're using uncacheable memory, which means that
accesses are in program order. Change the barrier implementation
to not only do a memory fence, but also an acceptance fence. This
should more reliably synchronize drivers with the hardware. The
memory fence enforces ordering, but does not imply visibility (ie
the access does not necessarily have happened). This is what the
acceptance deals with.
cpufunc.h cleanup:
o Remove the low-level memory mapped I/O support functions. They are
not used. Keep the low-level I/O port access functions for legacy
drivers and add fences to ensure ia32 compatibility.
o Remove the syscons specific functions now that we have moved the
proper definitions where they belong.
o Replace the ia64_port_address() and ia64_memory_address() functions
with macros. There's a bigger change inline functions get inlined
when there aren't function callsi and the calculations are simply
enough to do it with macros.
Replace the one reference to ia64_memory address in mp_machdep.c to
use the macro.
devices aren't necessarily mapped within 4GB. I/O port addresses
are offsets into the memory mapped I/O port space, which is not
larger than 16MB. No need to convert those to 64 bit types.
from all low-level bus space support functions. There's no need
to actually force the read/write to be accepted by the platform
before we can do anything else. We still have the mf instruction
there, which forces ordering. This too is not required given the
semantices of the bus space I/O functions, but it's not at all
clear to me if there are any poorly written device drivers that
depend on the strict ordering by the processor. The motto here is
to take small steps...
- Don't include ia64_cpu.h and cpu.h
- Guard definitions by _NO_NAMESPACE_POLLUTION
- Move definition of KERNBASE to vmparam.h
o Move definitions of IA64_RR_{BASE|MASK} to vmparam.h
o Move definitions of IA64_PHYS_TO_RR{6|7} to vmparam.h
o While here, remove some left-over Alpha references.
and cpu_critical_exit() and moves associated critical prototypes into their
own header file, <arch>/<arch>/critical.h, which is only included by the
three MI source files that need it.
Backout and re-apply improperly comitted syntactical cleanups made to files
that were still under active development. Backout improperly comitted program
structure changes that moved localized declarations to the top of two
procedures. Partially re-apply one of the program structure changes to
move 'mask' into an intermediate block rather then in three separate
sub-blocks to make the code more readable. Re-integrate bug fixes that Jake
made to the sparc64 code.
Note: In general, developers should not gratuitously move declarations out
of sub-blocks. They are where they are for reasons of structure, grouping,
readability, compiler-localizability, and to avoid developer-introduced bugs
similar to several found in recent years in the VFS and VM code.
Reviewed by: jake
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
- The MD functions critical_enter/exit are renamed to start with a cpu_
prefix.
- MI wrapper functions critical_enter/exit maintain a per-thread nesting
count and a per-thread critical section saved state set when entering
a critical section while at nesting level 0 and restored when exiting
to nesting level 0. This moves the saved state out of spin mutexes so
that interlocking spin mutexes works properly.
- Most low-level MD code that used critical_enter/exit now use
cpu_critical_enter/exit. MI code such as device drivers and spin
mutexes use the MI wrappers. Note that since the MI wrappers store
the state in the current thread, they do not have any return values or
arguments.
- mtx_intr_enable() is replaced with a constant CRITICAL_FORK which is
assigned to curthread->td_savecrit during fork_exit().
Tested on: i386, alpha
sections.
- Add implementations of the critical_enter() and critical_exit() functions
and remove restore_intr() and save_intr().
- Remove the somewhat bogus disable_intr() and enable_intr() functions on
the alpha as the alpha actually uses a priority level and not simple bit
flag on the CPU.
not work on any real hardware (or fully work on any simulator). Much more
needs to happen before this is actually functional but its nice to see
the FreeBSD copyright message appear in the ia64 simulator.