Commit Graph

5 Commits

Author SHA1 Message Date
John Baldwin
76681661be OCF: Remove support for asymmetric cryptographic operations.
There haven't been any non-obscure drivers that supported this
functionality and it has been impossible to test to ensure that it
still works.  The only known consumer of this interface was the engine
in OpenSSL < 1.1.  Modern OpenSSL versions do not include support for
this interface as it was not well-documented.

Reviewed by:	cem
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D29736
2021-04-12 14:28:43 -07:00
John Baldwin
a3d565a118 Add a crypto capability flag for accelerated software drivers.
Use this in GELI to print out a different message when accelerated
software such as AESNI is used vs plain software crypto.

While here, simplify the logic in GELI a bit for determing which type
of crypto driver was chosen the first time by examining the
capabilities of the matched driver after a single call to
crypto_newsession rather than making separate calls with different
flags.

Reviewed by:	delphij
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D25126
2020-06-09 22:26:07 +00:00
John Baldwin
9c0e3d3a53 Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer.  Using a separate output buffer avoids this copy.

- Create a new 'struct crypto_buffer' describing a crypto buffer
  containing a type and type-specific fields.  crp_ilen is gone,
  instead buffers that use a flat kernel buffer have a cb_buf_len
  field for their length.  The length of other buffer types is
  inferred from the backing store (e.g. uio_resid for a uio).
  Requests now have two such structures: crp_buf for the input buffer,
  and crp_obuf for the output buffer.

- Consumers now use helper functions (crypto_use_*,
  e.g. crypto_use_mbuf()) to configure the input buffer.  If an output
  buffer is not configured, the request still modifies the input
  buffer in-place.  A consumer uses a second set of helper functions
  (crypto_use_output_*) to configure an output buffer.

- Consumers must request support for separate output buffers when
  creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
  only permitted to queue a request with a separate output buffer on
  sessions with this flag set.  Existing drivers already reject
  sessions with unknown flags, so this permits drivers to be modified
  to support this extension without requiring all drivers to change.

- Several data-related functions now have matching versions that
  operate on an explicit buffer (e.g. crypto_apply_buf,
  crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).

- Most of the existing data-related functions operate on the input
  buffer.  However crypto_copyback always writes to the output buffer
  if a request uses a separate output buffer.

- For the regions in input/output buffers, the following conventions
  are followed:
  - AAD and IV are always present in input only and their
    fields are offsets into the input buffer.
  - payload is always present in both buffers.  If a request uses a
    separate output buffer, it must set a new crp_payload_start_output
    field to the offset of the payload in the output buffer.
  - digest is in the input buffer for verify operations, and in the
    output buffer for compute operations.  crp_digest_start is relative
    to the appropriate buffer.

- Add a crypto buffer cursor abstraction.  This is a more general form
  of some bits in the cryptosoft driver that tried to always use uio's.
  However, compared to the original code, this avoids rewalking the uio
  iovec array for requests with multiple vectors.  It also avoids
  allocate an iovec array for mbufs and populating it by instead walking
  the mbuf chain directly.

- Update the cryptosoft(4) driver to support separate output buffers
  making use of the cursor abstraction.

Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
John Baldwin
29fe41ddd7 Retire the CRYPTO_F_IV_GENERATE flag.
The sole in-tree user of this flag has been retired, so remove this
complexity from all drivers.  While here, add a helper routine drivers
can use to read the current request's IV into a local buffer.  Use
this routine to replace duplicated code in nearly all drivers.

Reviewed by:	cem
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D24450
2020-04-20 22:24:49 +00:00
John Baldwin
c034143269 Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
  initialization is replaced with a new flat structure: struct
  crypto_session_params.  This session includes a new mode to define
  how the other fields should be interpreted.  Available modes
  include:

  - COMPRESS (for compression/decompression)
  - CIPHER (for simply encryption/decryption)
  - DIGEST (computing and verifying digests)
  - AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
  - ETA (combined auth and encryption using encrypt-then-authenticate)

  Additional modes could be added in the future (e.g. if we wanted to
  support TLS MtE for AES-CBC in the kernel we could add a new mode
  for that.  TLS modes might also affect how AAD is interpreted, etc.)

  The flat structure also includes the key lengths and algorithms as
  before.  However, code doesn't have to walk the linked list and
  switch on the algorithm to determine which key is the auth key vs
  encryption key.  The 'csp_auth_*' fields are always used for auth
  keys and settings and 'csp_cipher_*' for cipher.  (Compression
  algorithms are stored in csp_cipher_alg.)

- Drivers no longer register a list of supported algorithms.  This
  doesn't quite work when you factor in modes (e.g. a driver might
  support both AES-CBC and SHA2-256-HMAC separately but not combined
  for ETA).  Instead, a new 'crypto_probesession' method has been
  added to the kobj interface for symmteric crypto drivers.  This
  method returns a negative value on success (similar to how
  device_probe works) and the crypto framework uses this value to pick
  the "best" driver.  There are three constants for hardware
  (e.g. ccr), accelerated software (e.g. aesni), and plain software
  (cryptosoft) that give preference in that order.  One effect of this
  is that if you request only hardware when creating a new session,
  you will no longer get a session using accelerated software.
  Another effect is that the default setting to disallow software
  crypto via /dev/crypto now disables accelerated software.

  Once a driver is chosen, 'crypto_newsession' is invoked as before.

- Crypto operations are now solely described by the flat 'cryptop'
  structure.  The linked list of descriptors has been removed.

  A separate enum has been added to describe the type of data buffer
  in use instead of using CRYPTO_F_* flags to make it easier to add
  more types in the future if needed (e.g. wired userspace buffers for
  zero-copy).  It will also make it easier to re-introduce separate
  input and output buffers (in-kernel TLS would benefit from this).

  Try to make the flags related to IV handling less insane:

  - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
    member of the operation structure.  If this flag is not set, the
    IV is stored in the data buffer at the 'crp_iv_start' offset.

  - CRYPTO_F_IV_GENERATE means that a random IV should be generated
    and stored into the data buffer.  This cannot be used with
    CRYPTO_F_IV_SEPARATE.

  If a consumer wants to deal with explicit vs implicit IVs, etc. it
  can always generate the IV however it needs and store partial IVs in
  the buffer and the full IV/nonce in crp_iv and set
  CRYPTO_F_IV_SEPARATE.

  The layout of the buffer is now described via fields in cryptop.
  crp_aad_start and crp_aad_length define the boundaries of any AAD.
  Previously with GCM and CCM you defined an auth crd with this range,
  but for ETA your auth crd had to span both the AAD and plaintext
  (and they had to be adjacent).

  crp_payload_start and crp_payload_length define the boundaries of
  the plaintext/ciphertext.  Modes that only do a single operation
  (COMPRESS, CIPHER, DIGEST) should only use this region and leave the
  AAD region empty.

  If a digest is present (or should be generated), it's starting
  location is marked by crp_digest_start.

  Instead of using the CRD_F_ENCRYPT flag to determine the direction
  of the operation, cryptop now includes an 'op' field defining the
  operation to perform.  For digests I've added a new VERIFY digest
  mode which assumes a digest is present in the input and fails the
  request with EBADMSG if it doesn't match the internally-computed
  digest.  GCM and CCM already assumed this, and the new AEAD mode
  requires this for decryption.  The new ETA mode now also requires
  this for decryption, so IPsec and GELI no longer do their own
  authentication verification.  Simple DIGEST operations can also do
  this, though there are no in-tree consumers.

  To eventually support some refcounting to close races, the session
  cookie is now passed to crypto_getop() and clients should no longer
  set crp_sesssion directly.

- Assymteric crypto operation structures should be allocated via
  crypto_getkreq() and freed via crypto_freekreq().  This permits the
  crypto layer to track open asym requests and close races with a
  driver trying to unregister while asym requests are in flight.

- crypto_copyback, crypto_copydata, crypto_apply, and
  crypto_contiguous_subsegment now accept the 'crp' object as the
  first parameter instead of individual members.  This makes it easier
  to deal with different buffer types in the future as well as
  separate input and output buffers.  It's also simpler for driver
  writers to use.

- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
  This understands the various types of buffers so that drivers that
  use DMA do not have to be aware of different buffer types.

- Helper routines now exist to build an auth context for HMAC IPAD
  and OPAD.  This reduces some duplicated work among drivers.

- Key buffers are now treated as const throughout the framework and in
  device drivers.  However, session key buffers provided when a session
  is created are expected to remain alive for the duration of the
  session.

- GCM and CCM sessions now only specify a cipher algorithm and a cipher
  key.  The redundant auth information is not needed or used.

- For cryptosoft, split up the code a bit such that the 'process'
  callback now invokes a function pointer in the session.  This
  function pointer is set based on the mode (in effect) though it
  simplifies a few edge cases that would otherwise be in the switch in
  'process'.

  It does split up GCM vs CCM which I think is more readable even if there
  is some duplication.

- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
  as an auth algorithm and updated cryptocheck to work with it.

- Combined cipher and auth sessions via /dev/crypto now always use ETA
  mode.  The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
  This was actually documented as being true in crypto(4) before, but
  the code had not implemented this before I added the CIPHER_FIRST
  flag.

- I have not yet updated /dev/crypto to be aware of explicit modes for
  sessions.  I will probably do that at some point in the future as well
  as teach it about IV/nonce and tag lengths for AEAD so we can support
  all of the NIST KAT tests for GCM and CCM.

- I've split up the exising crypto.9 manpage into several pages
  of which many are written from scratch.

- I have converted all drivers and consumers in the tree and verified
  that they compile, but I have not tested all of them.  I have tested
  the following drivers:

  - cryptosoft
  - aesni (AES only)
  - blake2
  - ccr

  and the following consumers:

  - cryptodev
  - IPsec
  - ktls_ocf
  - GELI (lightly)

  I have not tested the following:

  - ccp
  - aesni with sha
  - hifn
  - kgssapi_krb5
  - ubsec
  - padlock
  - safe
  - armv8_crypto (aarch64)
  - glxsb (i386)
  - sec (ppc)
  - cesa (armv7)
  - cryptocteon (mips64)
  - nlmsec (mips64)

Discussed with:	cem
Relnotes:	yes
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00