support more than one architecture at a time, build as from the
default for the host and if CROSS_TOOLS defines other architectures,
build them as as_${arch}
are now included according to the cross-architecture support required,
default the BINDIR for i386 to /usr/libexec/elf here instead of in
all the i386 specific makefiles. For all other architectures, BINDIR
is just /usr/bin.
be defined (in /etc/make.conf, say) and set to the additional architectures
that need to be compiled in. So on alpha I set CROSS_TOOLS = i386.
On i386 you can't build alpha due to lack of 64-bit support on 32-bit
architectures, but that's a GNU problem.
This change relies on makefiles in the binutils sub-directories having
the extension defined in the CROSS_TOOLS, instead of those makefiles
being selected based on the host architecture.
worked because .ORDER prevented problems from concurrent generation
of multiple parsers (and their headers), and there were no missing
dependencies because the generated headers were not actually used.
requires the new file.
Fixed stale near-copy of contrib/libreadline/doc/hsuser.texinfo. Patch
it at build ntime, and only keep the patch for it here.
Don't keep a copy of contrib/gdb/gdb/doc/all-cfg.texi here. Link to it
at build time.
be worth much effort. Install all i386 binutils programs in
"/usr/libexec/elf". Disable a.out support in libbfd. It's too
dangerous to leave it in. Some of the utilities think they can
handle a.out, but they generate bad object files.
the binutils headers for (machine)-unknown-freebsdelf.
Also copy the bfd.h header to an architecture specific directory
because there are two fundamental lines that differ (32-bit vs 64-bit)
between i386 and alpha.
The config.h for libbinutils generates the same on alpha as i386,
so I didn't change that (though I was tempted!).
support building it for variant architectures. It was already
becoming clear that the former structure was too rigid and didn't
scale well.
The usual sort of makefile magic arranges to .include an architecture
specific makefile "Makefile.${MACHINE_ARCH}" in each directory
where it exists. Also, sources will be found in each subdirectory
"${MACHINE_ARCH}" that exists. This is all taken care of automatically
by the top level "Makefile.inc0".
This all seems to work right for the i386 now. I have also converted
those alpha pieces already present to the new schema as best I
could.
Also: change the BINDIR on the i386 to /usr/libexec/elf for "ar"
and "ranlib". They are not object format independent enough to
put into /usr/bin.
strip program (via "install") to strip itself. But the program
wasn't executable because "install" hadn't made it so yet. I
borrowed the method used for the old strip to get around this.
This finishes up the binutils import. But I am leaving it disabled
in "src/gnu/usr.bin/Makefile" for now. It is not used by anything
yet, so I'll take this opportunity to run one more round of tests
before enabling it.
0xefbfe000) and kernel_start (normally 0xf0100000).
Things are unnecessarily (?) difficult because procfs is used to
access user addresses in the live-kernel case although we must have
access to /dev/mem to work at all, and whatever works for the
dead-kernel case should work in all cases (modulo volatility of
live kernel variables). We used the wrong range [0, kernel_start)
for user addresses. Procfs should only work up to VM_MAXUSER_ADDRESS,
but it bogusly works for reads up to the address 2 pages higher
(the user area, including the kernel stack, is mapped to where the
user area used to be (WTUAUTB)). Procfs can not work at all for
addresses between WTUAUTB and kernel_start.
Now we use procfs only to access addresses up to VM_MAXUSER_ADDRESS.
Higher addresses are translated normally using kvtophys(), so the
user ptd is used for addresses below the real kernel start (0xf0000000;
see INKERNEL()) and nothing is found WTUAUTB.
Strange accesses that cross the user-kernel boundary are now handled,
but such ranges are currently always errors because they necessarily
overlap the hole WTUAUTB.
Short reads are still not handled.
Correct translations would have been null. However, kstack was
the top of the kernel stack instead of the base of the kernel stack
like it was when the kernel exported it, so the area above the
kernel stack was mistranslated and the kernel stack was not
translated. This bug was depended on to compensate for the wrong
value of kstack - to read the pcb, instead of just using the address
of the pcb, we used the mistranslated address of kstack, which
happened to be the same (curpcb = kstack - 0x2000).
This area is simpler than it used to be now that the kernel stack
address is per-process. The code still seems to be more complicated
than necessary - the `found_pcb == 0' case seems to be unused.
gdb was cloned from the buggy version of kvm_uread() in libkvm and
had the same bugs. It looped endlessly on EOF and checked errno
without setting it in the lseek() error check. The first bug caused
gdb to loop endlessly for reads from addresses between the end of
the user area and the start of the kernel text. kvm_uread() should
not be used for addresses beyond the end of the user area, but is
due to bugs elsewhere.
the previous frame is in the usual place even for traps, interrupts
and syscalls in the kernel, because the assembly language stubs
don't change the frame pointer. The previous frame is just not for
the calling function. We may as well depend on this as on magic to
determine the trap frame address. The magic is in FRAME_SAVED_PC()
which elides the correct number of stubs (1) to go back to a pc that
matches the previous frame.
Removing fbsd_kern_frame_chain() fixes bugs in it. Xsyscall was
misspelled as _Xsyscall (gdb removes one leading underscore), so
the tf_syscall frame type was never found. This was harmless
because tf_normal works in all cases in fbsd_kern_frame_chain()
and Xsyscall is spelled correctly in fbsd_kern_frame_saved_pc()
where it matters. There were style bugs on almost every line,
starting with a primary indent of 7.