Commit Graph

15 Commits

Author SHA1 Message Date
Andrew Turner
405ada37fb Add support for the uart classes to set their default register shift value.
This is needed with the pl011 driver. Before this change it would default
to a shift of 0, however the hardware places the registers at 4-byte
addresses meaning the value should be 2.

This patch fixes this for the pl011 when configured using the fdt. The
other drivers have a default value of 0 to keep this a no-op.

MFC after:	1 week
2015-04-11 17:16:23 +00:00
Warner Losh
d76a1ef4e1 Introduce grab and ungrab upcalls. When the kernel desires to grab the
console, it calls the grab functions. These functions should turn off
the RX interrupts, and any others that interfere. This makes mountroot
prompt work again. If there's more generalized need other than
prompting, many of these routines should be expanded to do those new
things.

Should have been part of r260889, but waasn't due to command line typo.

Reviewed by:	bde (with reservations)
2014-01-19 19:39:13 +00:00
Warner Losh
f83ed22cb6 Plumb the cn_grab and cn_ungrab routines down into the uart
clients. Mask RX interrupts while grabbed on the atmel serial
driver. This UART interrupts every character. When interrupts are
enabled at the mountroot> prompt, this means the ISR eats the
characters. Rather than try to create a cooperative buffering system
for the low level kernel console, instead just mask out the ISR. For
NS8250 and decsendents this isn't needed, since interrupts only happen
after 14 or more characters (depending on the fifo settings). Plumb
such that these are optional so there's no change in behavior for all
the other UART clients. ddb worked on this platform because all
interrupts were disabled while it was running, so this problem wasn't
noticed. The mountroot> issue has been around for a very very long
time.

MFC after:	3 days
2013-12-21 16:23:31 +00:00
Marcel Moolenaar
f8100ce2a7 Don't expose the uart_ops structure directly, but instead have
it obtained through the uart_class structure. This allows us
to declare the uart_class structure as weak and as such allows
us to reference it even when it's not compiled-in.
It also allows is to get the uart_ops structure by name, which
makes it possible to implement the dt tag handling in uart_getenv().
The side-effect of all this is that we're using the uart_class
structure more consistently which means that we now also have
access to the size of the bus space block needed by the hardware
when we map the bus space, eliminating any hardcoding.
2007-04-02 22:00:22 +00:00
Marius Strobl
97202af2dc - Add a uart_rxready() and corresponding device-specific implementations
that can be used to check whether receive data is ready, i.e. whether
  the subsequent call of uart_poll() should return a char, and unlike
  uart_poll() doesn't actually receive data.
- Remove the device-specific implementations of uart_poll() and implement
  uart_poll() in terms of uart_getc() and the newly added uart_rxready()
  in order to minimize code duplication.
- In sunkbd(4) take advantage of uart_rxready() and use it to implement
  the polled mode part of sunkbd_check() so we don't need to buffer a
  potentially read char in the softc.
- Fix some mis-indentation in sunkbd_read_char().

Discussed with:	marcel
2007-01-18 22:01:19 +00:00
Marcel Moolenaar
634e63c986 Don't hold the hardware mutex across getc(). It can wait indefinitely
for a character to be received. Instead let getc() do any necesary
locking.
2006-04-01 19:04:54 +00:00
Marcel Moolenaar
8af03381d8 Add support for scc(4). 2006-03-30 18:37:03 +00:00
Warner Losh
098ca2bda9 Start each of the license/copyright comments with /*-, minor shuffle of lines 2005-01-06 01:43:34 +00:00
Marius Strobl
37f37506de Remove the whole uart_cpu_identify() stuff again. Now that it's no longer
used on sparc64 they are only stubs on all architectures and it doesn't
look like if we would need it in the near future again.

Ok'ed by:	marcel
2004-11-17 20:01:43 +00:00
Marius Strobl
efa79eb77e - Introduce an uart_cpu_identify() which is implemented in uart_cpu_<arch>.c
and that can be used as an identify function for all kinds of busses on a
  certain platform. Expect for sparc64 these are only stubs right now. [1]
- For sparc64, add code to its uart_cpu_identify() for registering the on-
  board ISA UARTs and their resources based on information obtained from
  Open Firmware.
  It would be better if this would be done in the OFW ISA code. However, due
  to the common FreeBSD ISA code and PNP-IDs not always being present in the
  properties of the ISA nodes there seems to be no good way to implement that.
  Therefore special casing UARTs as the sole really relevant ISA devices on
  sparc64 seemed reasonable. [2]

Approved by:	marcel
Discussed with:	marcel [1], tmm [2]
Tested by:	make universe
2004-08-14 23:54:27 +00:00
Marcel Moolenaar
2ae4f1fd16 Introduce the hw.uart.console and hw.uart.dbgport environment variables
to select a serial console and debug port (resp). On ia64 these replace
the use of hints completely and take precedence over hints on alpha,
amd64 and i386. On sparc64 these variables are not yet recognised.

The reasons for introducing these variables are:
1.  Hints have side-effects. They reserve the unit number for use by
    isa or acpi devices and therefore cannot be used to select a pci
    device. Also, the use of a unit number to select a device prior
    to bus enumeration is nonsense. The new variables have no side-
    effects and are not based on unit numbers.
2.  Hints don't have the expression power to allow the sysadmin to
    select UARTs that are not legacy PC devices and need the support
    of compile-time constants to give the sysadmin some level of
    flexibility.

The hw.uart.console and hw.uart.dbgport variables specify a list of
attributes. An attribute is a tag-value pair, seperated by a colon.
Attributes are seperated by a comma. Where possible, tags are the
same as those in /etc/remote (only br and pa in practice). Details
can be found in the manpage (not part of this commit).

Not tested on: amd64, pc98
2004-03-20 02:14:02 +00:00
Yoshihiro Takahashi
c423dba334 - Keep the base address in struct uart_bas for sab82532 and z8530 modules.
- Remove buggy uart_cpu_busaddr() function.
2003-09-23 09:25:38 +00:00
Marcel Moolenaar
5cc705512d Remove the assumption that a bus_space_handle_t is an I/O address
from the SAB82532 and the Z8530 hardware drivers by introducing
uart_cpu_busaddr(). The assumption is not true on pc98 where
bus_space_handle_t is a pointer to a structure.
The uart_cpu_busaddr() function will return the bus address
corresponding the tag and handle given to it by the BAS.

WARNING: the intend of the function is STRICTLY to allow hardware
drivers to determine which logical channel they control and is NOT
to be used for actual I/O. It is therefore EXPLICITLY allowed that
uart_cpu_busaddr() returns only the lower 8 bits of the address
and garbage in all other bits. No mistakes...
2003-09-07 21:51:03 +00:00
Warner Losh
af1af2d2cc Better stab at MD code for pc98. The 8251 stuff is a total lie
(ns8250 copied and s/ns8250/i8251/g), but there for linkage purposes.
Real code to follow, once I get past some boot issues on my pc98 boxes
with recent current.
2003-09-07 04:59:15 +00:00
Marcel Moolenaar
27d5dc189c The uart(4) driver is an universal driver for various UART hardware.
It improves on sio(4) in the following areas:
o  Fully newbusified to allow for memory mapped I/O. This is a must
   for ia64 and sparc64,
o  Machine dependent code to take full advantage of machine and firm-
   ware specific ways to define serial consoles and/or debug ports.
o  Hardware abstraction layer to allow the driver to be used with
   various UARTs, such as the well-known ns8250 family of UARTs, the
   Siemens sab82532 or the Zilog Z8530. This is especially important
   for pc98 and sparc64 where it's common to have different UARTs,
o  The notion of system devices to unkludge low-level consoles and
   remote gdb ports and provides the mechanics necessary to support
   the keyboard on sparc64 (which is UART based).
o  The notion of a kernel interface so that a UART can be tied to
   something other than the well-known TTY interface. This is needed
   on sparc64 to present the user with a device and ioctl handling
   suitable for a keyboard, but also allows us to cleanly hide an
   UART when used as a debug port.

Following is a list of features and bugs/flaws specific to the ns8250
family of UARTs as compared to their support in sio(4):
o  The uart(4) driver determines the FIFO size and automaticly takes
   advantages of larger FIFOs and/or additional features. Note that
   since I don't have sufficient access to 16[679]5x UARTs, hardware
   flow control has not been enabled. This is almost trivial to do,
   provided one can test. The downside of this is that broken UARTs
   are more likely to not work correctly with uart(4). The need for
   tunables or knobs may be large enough to warrant their creation.
o  The uart(4) driver does not share the same bumpy history as sio(4)
   and will therefore not provide the necessary hooks, tweaks, quirks
   or work-arounds to deal with once common hardware. To that extend,
   uart(4) supports a subset of the UARTs that sio(4) supports. The
   question before us is whether the subset is sufficient for current
   hardware.
o  There is no support for multiport UARTs in uart(4). The decision
   behind this is that uart(4) deals with one EIA RS232-C interface.
   Packaging of multiple interfaces in a single chip or on a single
   expansion board is beyond the scope of uart(4) and is now mostly
   left for puc(4) to deal with. Lack of hardware made it impossible
   to actually implement such a dependency other than is present for
   the dual channel SAB82532 and Z8350 SCCs.

The current list of missing features is:
o  No configuration capabilities. A set of tunables and sysctls is
   being worked out. There are likely not going to be any or much
   compile-time knobs. Such configuration does not fit well with
   current hardware.
o  No support for the PPS API. This is partly dependent on the
   ability to configure uart(4) and partly dependent on having
   sufficient information to implement it properly.

As usual, the manpage is present but lacks the attention the
software has gotten.
2003-09-06 23:13:47 +00:00