code readability and facilitates some anticipated optimizations in
tcp_sack_option().
- Remove tcp_print_holes() and TCP_SACK_DEBUG.
Submitted by: Raja Mukerji.
Reviewed by: Mohan Srinivasan, Noritoshi Demizu.
ineffective, depreciated and can be abused to degrade the performance
of active TCP sessions if spoofed.
Replace a bogus call to tcp_quench() in tcp_output() with the direct
equivalent tcpcb variable assignment.
Security: draft-gont-tcpm-icmp-attacks-03.txt Section 7.1
MFC after: 3 days
in flight in SACK recovery.
Found by: Noritoshi Demizu
Submitted by: Mohan Srinivasan <mohans at yahoo-inc dot com>
Noritoshi Demizu <demizu at dd dot ij4u dot or dot jp>
Raja Mukerji <raja at moselle dot com>
per-connection and globally. This eliminates potential DoS attacks
where SACK scoreboard elements tie up too much memory.
Submitted by: Raja Mukerji (raja at moselle dot com).
Reviewed by: Mohan Srinivasan (mohans at yahoo-inc dot com).
o Use SYSCTL_IN() macro instead of direct call of copyin(9).
Submitted by: ume
o Move sysctl_drop() implementation to sys/netinet/tcp_subr.c where
most of tcp sysctls live.
o There are net.inet[6].tcp[6].getcred sysctls already, no needs in
a separate struct tcp_ident_mapping.
Suggested by: ume
utility:
The tcpdrop command drops the TCP connection specified by the
local address laddr, port lport and the foreign address faddr,
port fport.
Obtained from: OpenBSD
Reviewed by: rwatson (locking), ru (man page), -current
MFC after: 1 month
A complete rationale and discussion is given in this message
and the resulting discussion:
http://docs.freebsd.org/cgi/mid.cgi?4177C8AD.6060706
Note that this commit removes only the functional part of T/TCP
from the tcp_* related functions in the kernel. Other features
introduced with RFC1644 are left intact (socket layer changes,
sendmsg(2) on connection oriented protocols) and are meant to
be reused by a simpler and less intrusive reimplemention of the
previous T/TCP functionality.
Discussed on: -arch
to control the packets injected while in sack recovery (for both
retransmissions and new data).
- Cleanups to the sack codepaths in tcp_output.c and tcp_sack.c.
- Add a new sysctl (net.inet.tcp.sack.initburst) that controls the
number of sack retransmissions done upon initiation of sack recovery.
Submitted by: Mohan Srinivasan <mohans@yahoo-inc.com>
- Trailing tab/space cleanup
- Remove spurious spaces between or before tabs
This change avoids touching files that Andre likely has in his working
set for PFIL hooks changes for IPFW/DUMMYNET.
Approved by: re (scottl)
Submitted by: Xin LI <delphij@frontfree.net>
for the SYN|ACK packet and then letting in6_pcbconnect set the
flowlabel later. Arange for the syncache/syncookie code to set and
recall the flow label so that the flowlabel used for the SYN|ACK
is consistent. This is done by using some of the cookie (when tcp
cookies are enabeled) and by stashing the flowlabel in syncache.
Tested and Discovered by: Orla McGann <orly@cnri.dit.ie>
Approved by: ume, silby
MFC after: 1 month
originated on RELENG_4 and was ported to -CURRENT.
The scoreboarding code was obtained from OpenBSD, and many
of the remaining changes were inspired by OpenBSD, but not
taken directly from there.
You can enable/disable sack using net.inet.tcp.do_sack. You can
also limit the number of sack holes that all senders can have in
the scoreboard with net.inet.tcp.sackhole_limit.
Reviewed by: gnn
Obtained from: Yahoo! (Mohan Srinivasan, Jayanth Vijayaraghavan)
possible while maintaining compatibility with the widest range of TCP stacks.
The algorithm is as follows:
---
For connections in the ESTABLISHED state, only resets with
sequence numbers exactly matching last_ack_sent will cause a reset,
all other segments will be silently dropped.
For connections in all other states, a reset anywhere in the window
will cause the connection to be reset. All other segments will be
silently dropped.
---
The necessity of accepting all in-window resets was discovered
by jayanth and jlemon, both of whom have seen TCP stacks that
will respond to FIN-ACK packets with resets not meeting the
strict last_ack_sent check.
Idea by: Darren Reed
Reviewed by: truckman, jlemon, others(?)
TIME_WAIT recycling cases I was able to generate with http testing tools.
In short, as the old algorithm relied on ticks to create the time offset
component of an ISN, two connections with the exact same host, port pair
that were generated between timer ticks would have the exact same sequence
number. As a result, the second connection would fail to pass the TIME_WAIT
check on the server side, and the SYN would never be acknowledged.
I've "fixed" this by adding random positive increments to the time component
between clock ticks so that ISNs will *always* be increasing, no matter how
quickly the port is recycled.
Except in such contrived benchmarking situations, this problem should never
come up in normal usage... until networks get faster.
No MFC planned, 4.x is missing other optimizations that are needed to even
create the situation in which such quick port recycling will occur.
increased <netinet/tcp_var>'s already large set of prerequisites, and
this was handled badly. Just don't declare the complete syncache struct
unless <netinet/pcb.h> is included before <netinet/tcp_var.h>.
Approved by: jlemon (years ago, for a more invasive fix)
amount of segments it will hold.
The following tuneables and sysctls control the behaviour of the tcp
segment reassembly queue:
net.inet.tcp.reass.maxsegments (loader tuneable)
specifies the maximum number of segments all tcp reassemly queues can
hold (defaults to 1/16 of nmbclusters).
net.inet.tcp.reass.maxqlen
specifies the maximum number of segments any individual tcp session queue
can hold (defaults to 48).
net.inet.tcp.reass.cursegments (readonly)
counts the number of segments currently in all reassembly queues.
net.inet.tcp.reass.overflows (readonly)
counts how often either the global or local queue limit has been reached.
Tested by: bms, silby
Reviewed by: bms, silby
This is the first of two commits; bringing in the kernel support first.
This can be enabled by compiling a kernel with options TCP_SIGNATURE
and FAST_IPSEC.
For the uninitiated, this is a TCP option which provides for a means of
authenticating TCP sessions which came into being before IPSEC. It is
still relevant today, however, as it is used by many commercial router
vendors, particularly with BGP, and as such has become a requirement for
interconnect at many major Internet points of presence.
Several parts of the TCP and IP headers, including the segment payload,
are digested with MD5, including a shared secret. The PF_KEY interface
is used to manage the secrets using security associations in the SADB.
There is a limitation here in that as there is no way to map a TCP flow
per-port back to an SPI without polluting tcpcb or using the SPD; the
code to do the latter is unstable at this time. Therefore this code only
supports per-host keying granularity.
Whilst FAST_IPSEC is mutually exclusive with KAME IPSEC (and thus IPv6),
TCP_SIGNATURE applies only to IPv4. For the vast majority of prospective
users of this feature, this will not pose any problem.
This implementation is output-only; that is, the option is honoured when
responding to a host initiating a TCP session, but no effort is made
[yet] to authenticate inbound traffic. This is, however, sufficient to
interwork with Cisco equipment.
Tested with a Cisco 2501 running IOS 12.0(27), and Quagga 0.96.4 with
local patches. Patches for tcpdump to validate TCP-MD5 sessions are also
available from me upon request.
Sponsored by: sentex.net
resource exhaustion attacks.
For network link optimization TCP can adjust its MSS and thus
packet size according to the observed path MTU. This is done
dynamically based on feedback from the remote host and network
components along the packet path. This information can be
abused to pretend an extremely low path MTU.
The resource exhaustion works in two ways:
o during tcp connection setup the advertized local MSS is
exchanged between the endpoints. The remote endpoint can
set this arbitrarily low (except for a minimum MTU of 64
octets enforced in the BSD code). When the local host is
sending data it is forced to send many small IP packets
instead of a large one.
For example instead of the normal TCP payload size of 1448
it forces TCP payload size of 12 (MTU 64) and thus we have
a 120 times increase in workload and packets. On fast links
this quickly saturates the local CPU and may also hit pps
processing limites of network components along the path.
This type of attack is particularly effective for servers
where the attacker can download large files (WWW and FTP).
We mitigate it by enforcing a minimum MTU settable by sysctl
net.inet.tcp.minmss defaulting to 256 octets.
o the local host is reveiving data on a TCP connection from
the remote host. The local host has no control over the
packet size the remote host is sending. The remote host
may chose to do what is described in the first attack and
send the data in packets with an TCP payload of at least
one byte. For each packet the tcp_input() function will
be entered, the packet is processed and a sowakeup() is
signalled to the connected process.
For example an attack with 2 Mbit/s gives 4716 packets per
second and the same amount of sowakeup()s to the process
(and context switches).
This type of attack is particularly effective for servers
where the attacker can upload large amounts of data.
Normally this is the case with WWW server where large POSTs
can be made.
We mitigate this by calculating the average MSS payload per
second. If it goes below 'net.inet.tcp.minmss' and the pps
rate is above 'net.inet.tcp.minmssoverload' defaulting to
1000 this particular TCP connection is resetted and dropped.
MITRE CVE: CAN-2004-0002
Reviewed by: sam (mentor)
MFC after: 1 day
the routing table. Move all usage and references in the tcp stack
from the routing table metrics to the tcp hostcache.
It caches measured parameters of past tcp sessions to provide better
initial start values for following connections from or to the same
source or destination. Depending on the network parameters to/from
the remote host this can lead to significant speedups for new tcp
connections after the first one because they inherit and shortcut
the learning curve.
tcp_hostcache is designed for multiple concurrent access in SMP
environments with high contention and is hash indexed by remote
ip address.
It removes significant locking requirements from the tcp stack with
regard to the routing table.
Reviewed by: sam (mentor), bms
Reviewed by: -net, -current, core@kame.net (IPv6 parts)
Approved by: re (scottl)
previously only considered the send sequence space. Unfortunately,
some OSes (windows) still use a random positive increments scheme for
their syn-ack ISNs, so I must consider receive sequence space as well.
The value of 250000 bytes / second for Microsoft's ISN rate of increase
was determined by testing with an XP machine.
we will generate for a given ip/port tuple has advanced far enough
for the time_wait socket in question to be safely recycled.
- Have in_pcblookup_local use tcp_twrecycleable to determine if
time_Wait sockets which are hogging local ports can be safely
freed.
This change preserves proper TIME_WAIT behavior under normal
circumstances while allowing for safe and fast recycling whenever
ephemeral port space is scarce.
lastest rev of the spec. Use an explicit flag for Fast Recovery. [1]
Fix bug with exiting Fast Recovery on a retransmit timeout
diagnosed by Lu Guohan. [2]
Reviewed by: Thomas Henderson <thomas.r.henderson@boeing.com>
Reported and tested by: Lu Guohan <lguohan00@mails.tsinghua.edu.cn> [2]
Approved by: Thomas Henderson <thomas.r.henderson@boeing.com>,
Sally Floyd <floyd@acm.org> [1]
sure that the MAC label on TCP responses during TIMEWAIT is
properly set from either the socket (if available), or the mbuf
that it's responding to.
Unfortunately, this is made somewhat difficult by the TCP code,
as tcp_twstart() calls tcp_twrespond() after discarding the socket
but without a reference to the mbuf that causes the "response".
Passing both the socket and the mbuf works arounds this--eventually
it might be good to make sure the mbuf always gets passed in in
"response" scenarios but working through this provided to
complicate things too much.
Approved by: re (scottl)
Reviewed by: hsu
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
doing Limited Transmit. Only artificially inflate the congestion
window by 1 segment instead of the usual 3 to take into account
the 2 already sent by Limited Transmit.
Approved in principle by: Mark Allman <mallman@grc.nasa.gov>,
Hari Balakrishnan <hari@nms.lcs.mit.edu>, Sally Floyd <floyd@icir.org>
control block. Allow the socket and tcpcb structures to be freed
earlier than inpcb. Update code to understand an inp w/o a socket.
Reviewed by: hsu, silby, jayanth
Sponsored by: DARPA, NAI Labs
routine does not require a tcpcb to operate. Since we no longer keep
template mbufs around, move pseudo checksum out of this routine, and
merge it with the length update.
Sponsored by: DARPA, NAI Labs
not meant to duplicate) TCP/Vegas. Add four sysctls and default the
implementation to 'off'.
net.inet.tcp.inflight_enable enable algorithm (defaults to 0=off)
net.inet.tcp.inflight_debug debugging (defaults to 1=on)
net.inet.tcp.inflight_min minimum window limit
net.inet.tcp.inflight_max maximum window limit
MFC after: 1 week
indication of whether this happenned so the calling function
knows whether or not to unlock the pcb.
Submitted by: Jennifer Yang (yangjihui@yahoo.com)
Bug reported by: Sid Carter (sidcarter@symonds.net)
Ensure that the syn cache's syn-ack packets contain the same
ip_tos, ip_ttl, and DF bits as all other tcp packets.
PR: 39141
MFC after: 2 weeks
This time, make sure that ipv4 specific code (aka all of the above)
is only run in the ipv4 case.
receiver was not sending an immediate ack with delayed acks turned on
when the input buffer is drained, preventing the transmitter from
restarting immediately.
Propogate the TCP_NODELAY option to accept()ed sockets. (Helps tbench and
is a good idea anyway).
Some cleanup. Identify additonal issues in comments.
MFC after: 1 day
to send all its data, especially when the data is less than one MSS.
This fixes an issue where the stack was delaying the sending
of data, eventhough there was enough window to send all the data and
the sending of data was emptying the socket buffer.
Problem found by Yoshihiro Tsuchiya (tsuchiya@flab.fujitsu.co.jp)
Submitted by: Jayanth Vijayaraghavan