madvise().
This feature prevents the update daemon from gratuitously flushing
dirty pages associated with a mapped file-backed region of memory. The
system pager will still page the memory as necessary and the VM system
will still be fully coherent with the filesystem. Modifications made
by other means to the same area of memory, for example by write(), are
unaffected. The feature works on a page-granularity basis.
MAP_NOSYNC allows one to use mmap() to share memory between processes
without incuring any significant filesystem overhead, putting it in
the same performance category as SysV Shared memory and anonymous memory.
Reviewed by: julian, alc, dg
* lockstatus() and VOP_ISLOCKED() gets a new process argument and a new
return value: LK_EXCLOTHER, when the lock is held exclusively by another
process.
* The ASSERT_VOP_(UN)LOCKED family is extended to use what this gives them
* Extend the vnode_if.src format to allow more exact specification than
locked/unlocked.
This commit should not do any semantic changes unless you are using
DEBUG_VFS_LOCKS.
Discussed with: grog, mch, peter, phk
Reviewed by: peter
Alot of the code in sys/kern directly accesses the *Q_HEAD and *Q_ENTRY
structures for list operations. This patch makes all list operations
in sys/kern use the queue(3) macros, rather than directly accessing the
*Q_{HEAD,ENTRY} structures.
Reviewed by: phk
Submitted by: Jake Burkholder <jake@checker.org>
PR: 14914
Correctly lock vnodes when calling VOP_OPEN() from filesystem mount code.
Unify spec_open() for bdev and cdev cases.
Remove the disabled bdev specific read/write code.
Merge the contents (less some trivial bordering the silly comments)
of <vm/vm_prot.h> and <vm/vm_inherit.h> into <vm/vm.h>. This puts
the #defines for the vm_inherit_t and vm_prot_t types next to their
typedefs.
This paves the road for the commit to follow shortly: change
useracc() to use VM_PROT_{READ|WRITE} rather than B_{READ|WRITE}
as argument.
two new functions spec_buf{read|write}.
Add sysctl vfs.bdev_buffered which defaults to 1 == true. This
sysctl can be used to experimentally turn buffered behaviour for
bdevs off. I should not be changed while any blockdevices are
open. Remove the misplaced sysctl vfs.enable_userblk_io.
No other changes in behaviour.
clustering issues (replacing code that used to be in
ufs/ufs/ufs_readwrite.c). vm_fault also now uses the new VM page counter
inlines.
This completes the changeover from vnode->v_lastr to vm_entry_t->v_lastr
for VM, and fp->f_nextread and fp->f_seqcount (which have been in the
tree for a while). Determination of the I/O strategy (sequential, random,
and so forth) is now handled on a descriptor-by-descriptor basis for
base I/O calls, and on a memory-region-by-memory-region and
process-by-process basis for VM faults.
Reviewed by: David Greenman <dg@root.com>, Alan Cox <alc@cs.rice.edu>
addaliasu() into addalias() (no operational change) and clarify comments
relating to a trick that vclean() uses.
The fix to BOOTP is yet another hack. Actually, rootfsid handling
is already a major hack. The whole thing needs to be cleaned up.
Reviewed by: David Greenman <dg@root.com>, Alan Cox <alc@cs.rice.edu>
to buffered block devices are allowed. The default is to be backwards
compatible, i.e. reads and writes are allowed.
The idea is for a larger crowd to start running with this disabled and
see what problems, if any, crop up, and then to change the default to
off and see if any problems crop up in the next 6 months prior to
potentially removing support entirely. There are still a few people,
Julian and myself included, who believe the buffered block device
access from usermode to be useful.
Remove use of vnode->v_lastr from buffered block device I/O in
preparation for removal of vnode->v_lastr field, replacing it with
the already existing seqcount metric to detect sequential operation.
Reviewed by: Alan Cox <alc@cs.rice.edu>, David Greenman <dg@root.com>
Make the alias list a SLIST.
Drop the "fast recycling" optimization of vnodes (including
the returning of a prexisting but stale vnode from checkalias).
It doesn't buy us anything now that we don't hardlimit
vnodes anymore.
Rename checkalias2() and checkalias() to addalias() and
addaliasu() - which takes dev_t and udev_t arg respectively.
Make the revoke syscalls use vcount() instead of VALIASED.
Remove VALIASED flag, we don't need it now and it is faster
to traverse the much shorter lists than to maintain the
flag.
vfs_mountedon() can check the dev_t directly, all the vnodes
point to the same one.
Print the devicename in specfs/vprint().
Remove a couple of stale LFS vnode flags.
Remove unimplemented/unused LK_DRAINED;
In lookup() however it's the other way around as we need to supply the
dev_t for the vnode, so devfs still has a copy of it stashed away.
Sourcing it from the vnode in the vnops however is useful as it makes
a lot of the code almost the same as that in specfs.
have been maintained, and that is still the default. A new sysctl
variable "vfs.timestamp_precision" can be used to enable higher
levels of precision:
0 = seconds only; nanoseconds zeroed (default).
1 = seconds and nanoseconds, accurate within 1/HZ.
2 = seconds and nanoseconds, truncated to microseconds.
>=3 = seconds and nanoseconds, maximum precision.
Level 1 uses getnanotime(), which is fast but can be wrong by up
to 1/HZ. Level 2 uses microtime(). It might be desirable for
consistency with utimes() and friends, which take timeval structures
rather than timespecs. Level 3 uses nanotime() for the higest
precision.
I benchmarked levels 0, 1, and 3 by copying a 550 MB tree with
"cpio -pdu". There was almost negligible difference in the system
times -- much less than 1%, and less than the variation among
multiple runs at the same level. Bruce Evans dreamed up a torture
test involving 1-byte reads with intervening fstat() calls, but
the cpio test seems more realistic to me.
This feature is currently implemented only for the UFS (FFS and
MFS) filesystems. But I think it should be easy to support it in
the others as well.
An earlier version of this was reviewed by Bruce. He's not to
blame for any breakage I've introduced since then.
Reviewed by: bde (an earlier version of the code)
vnodes referencing this device.
Details:
cdevsw->d_parms has been removed, the specinfo is available
now (== dev_t) and the driver should modify it directly
when applicable, and the only driver doing so, does so:
vn.c. I am not sure the logic in checking for "<" was right
before, and it looks even less so now.
An intial pool of 50 struct specinfo are depleted during
early boot, after that malloc had better work. It is
likely that fewer than 50 would do.
Hashing is done from udev_t to dev_t with a prime number
remainder hash, experiments show no better hash available
for decent cost (MD5 is only marginally better) The prime
number used should not be close to a power of two, we use
83 for now.
Add new checkalias2() to get around the loss of info from
dev2udev() in bdevvp();
The aliased vnodes are hung on a list straight of the dev_t,
and speclisth[SPECSZ] is unused. The sharing of struct
specinfo means that the v_specnext moves into the vnode
which grows by 4 bytes.
Don't use a VBLK dev_t which doesn't make sense in MFS, now
we hang a dummy cdevsw on B/Cmaj 253 so that things look sane.
Storage overhead from all of this is O(50k).
Bump __FreeBSD_version to 400009
The next step will add the stuff needed so device-drivers can start to
hang things from struct specinfo
Only know casualy of this is swapinfo/pstat which should be fixes
the right way: Store the actual pathname in the kernel like mount
does. [Volounteers sought for this task]
The road map from here is roughly: expand struct specinfo into struct
based dev_t. Add dev_t registration facilities for device drivers and
start to use them.
large (1G) memory machine configurations. I was able to run 'dbench 32'
on a 32MB system without bring the machine to a grinding halt.
* buffer cache hash table now dynamically allocated. This will
have no effect on memory consumption for smaller systems and
will help scale the buffer cache for larger systems.
* minor enhancement to pmap_clearbit(). I noticed that
all the calls to it used constant arguments. Making
it an inline allows the constants to propogate to
deeper inlines and should produce better code.
* removal of inherent vfs_ioopt support through the emplacement
of appropriate #ifdef's, with John's permission. If we do not
find a use for it by the end of the year we will remove it entirely.
* removal of getnewbufloops* counters & sysctl's - no longer
necessary for debugging, getnewbuf() is now optimal.
* buffer hash table functions removed from sys/buf.h and localized
to vfs_bio.c
* VFS_BIO_NEED_DIRTYFLUSH flag and support code added
( bwillwrite() ), allowing processes to block when too many dirty
buffers are present in the system.
* removal of a softdep test in bdwrite() that is no longer necessary
now that bdwrite() no longer attempts to flush dirty buffers.
* slight optimization added to bqrelse() - there is no reason
to test for available buffer space on B_DELWRI buffers.
* addition of reverse-scanning code to vfs_bio_awrite().
vfs_bio_awrite() will attempt to locate clusterable areas
in both the forward and reverse direction relative to the
offset of the buffer passed to it. This will probably not
make much of a difference now, but I believe we will start
to rely on it heavily in the future if we decide to shift
some of the burden of the clustering closer to the actual
I/O initiation.
* Removal of the newbufcnt and lastnewbuf counters that Kirk
added. They do not fix any race conditions that haven't already
been fixed by the gbincore() test done after the only call
to getnewbuf(). getnewbuf() is a static, so there is no chance
of it being misused by other modules. ( Unless Kirk can think
of a specific thing that this code fixes. I went through it
very carefully and didn't see anything ).
* removal of VOP_ISLOCKED() check in flushbufqueues(). I do not
think this check is necessary, the buffer should flush properly
whether the vnode is locked or not. ( yes? ).
* removal of extra arguments passed to getnewbuf() that are not
necessary.
* missed cluster_wbuild() that had to be a cluster_wbuild_wb() in
vfs_cluster.c
* vn_write() now calls bwillwrite() *PRIOR* to locking the vnode,
which should greatly aid flushing operations in heavy load
situations - both the pageout and update daemons will be able
to operate more efficiently.
* removal of b_usecount. We may add it back in later but for now
it is useless. Prior implementations of the buffer cache never
had enough buffers for it to be useful, and current implementations
which make more buffers available might not benefit relative to
the amount of sophistication required to implement a b_usecount.
Straight LRU should work just as well, especially when most things
are VMIO backed. I expect that (even though John will not like
this assumption) directories will become VMIO backed some point soon.
Submitted by: Matthew Dillon <dillon@backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN,
QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA. With this patch clean
and dirty buffers have been separated. Empty buffers with KVM
assignments have been separated from truely empty buffers. getnewbuf()
has been rewritten and now operates in a 100% optimal fashion. That is,
it is able to find precisely the right kind of buffer it needs to
allocate a new buffer, defragment KVM, or to free-up an existing buffer
when the buffer cache is full (which is a steady-state situation for
the buffer cache).
Buffer flushing has been reorganized. Previously buffers were flushed
in the context of whatever process hit the conditions forcing buffer
flushing to occur. This resulted in processes blocking on conditions
unrelated to what they were doing. This also resulted in inappropriate
VFS stacking chains due to multiple processes getting stuck trying to
flush dirty buffers or due to a single process getting into a situation
where it might attempt to flush buffers recursively - a situation that
was only partially fixed in prior commits. We have added a new daemon
called the buf_daemon which is responsible for flushing dirty buffers
when the number of dirty buffers exceeds the vfs.hidirtybuffers limit.
This daemon attempts to dynamically adjust the rate at which dirty buffers
are flushed such that getnewbuf() calls (almost) never block.
The number of nbufs and amount of buffer space is now scaled past the
8MB limit that was previously imposed for systems with over 64MB of
memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed
somewhat. The number of physical buffers has been increased with the
intention that we will manage physical I/O differently in the future.
reassignbuf previously attempted to keep the dirtyblkhd list sorted which
could result in non-deterministic operation under certain conditions,
such as when a large number of dirty buffers are being managed. This
algorithm has been changed. reassignbuf now keeps buffers locally sorted
if it can do so cheaply, and otherwise gives up and adds buffers to
the head of the dirtyblkhd list. The new algorithm is deterministic but
not perfect. The new algorithm greatly reduces problems that previously
occured when write_behind was turned off in the system.
The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive
P_BUFEXHAUST bit. This bit allows processes working with filesystem
buffers to use available emergency reserves. Normal processes do not set
this bit and are not allowed to dig into emergency reserves. The purpose
of this bit is to avoid low-memory deadlocks.
A small race condition was fixed in getpbuf() in vm/vm_pager.c.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
SYSINIT_KT() etc (which is a static, compile-time procedure), use a
NetBSD-style kthread_create() interface. kproc_start is still available
as a SYSINIT() hook. This allowed simplification of chunks of the
sysinit code in the process. This kthread_create() is our old kproc_start
internals, with the SYSINIT_KT fork hooks grafted in and tweaked to work
the same as the NetBSD one.
One thing I'd like to do shortly is get rid of nfsiod as a user initiated
process. It makes sense for the nfs client code to create them on the
fly as needed up to a user settable limit. This means that nfsiod
doesn't need to be in /sbin and is always "available". This is a fair bit
easier to do outside of the SYSINIT_KT() framework.
lockmgr locks. This commit should be functionally equivalent to the old
semantics. That is, all buffer locking is done with LK_EXCLUSIVE
requests. Changes to take advantage of LK_SHARED and LK_RECURSIVE will
be done in future commits.
The cdevsw_add() function now finds the major number(s) in the
struct cdevsw passed to it. cdevsw_add_generic() is no longer
needed, cdevsw_add() does the same thing.
cdevsw_add() will print an message if the d_maj field looks bogus.
Remove nblkdev and nchrdev variables. Most places they were used
bogusly. Instead check a dev_t for validity by seeing if devsw()
or bdevsw() returns NULL.
Move bdevsw() and devsw() functions to kern/kern_conf.c
Bump __FreeBSD_version to 400006
This commit removes:
72 bogus makedev() calls
26 bogus SYSINIT functions
if_xe.c bogusly accessed cdevsw[], author/maintainer please fix.
I4b and vinum not changed. Patches emailed to authors. LINT
probably broken until they catch up.
if there is no character device associated with the block device. In this
case that doesn't matter because bdevvp() doesn't use the character
device structure.
I can use the pointy bit of the axe too.
inodes were synced every 15 seconds. This is now reversed as during
directory create, we cannot commit the directory entry until its
inode has been written. With this switch, the inodes will be more
likely to be written by the time that the directory is written thus
reducing the number of directory rollbacks that are needed.
udev_t in the kernel but still called dev_t in userland.
Provide functions to manipulate both types:
major() umajor()
minor() uminor()
makedev() umakedev()
dev2udev() udev2dev()
For now they're functions, they will become in-line functions
after one of the next two steps in this process.
Return major/minor/makedev to macro-hood for userland.
Register a name in cdevsw[] for the "filedescriptor" driver.
In the kernel the udev_t appears in places where we have the
major/minor number combination, (ie: a potential device: we
may not have the driver nor the device), like in inodes, vattr,
cdevsw registration and so on, whereas the dev_t appears where
we carry around a reference to a actual device.
In the future the cdevsw and the aliased-from vnode will be hung
directly from the dev_t, along with up to two softc pointers for
the device driver and a few houskeeping bits. This will essentially
replace the current "alias" check code (same buck, bigger bang).
A little stunt has been provided to try to catch places where the
wrong type is being used (dev_t vs udev_t), if you see something
not working, #undef DEVT_FASCIST in kern/kern_conf.c and see if
it makes a difference. If it does, please try to track it down
(many hands make light work) or at least try to reproduce it
as simply as possible, and describe how to do that.
Without DEVT_FASCIST I belive this patch is a no-op.
Stylistic/posixoid comments about the userland view of the <sys/*.h>
files welcome now, from userland they now contain the end result.
Next planned step: make all dev_t's refer to the same devsw[] which
means convert BLK's to CHR's at the perimeter of the vnodes and
other places where they enter the game (bootdev, mknod, sysctl).
Made a new (inline) function devsw(dev_t dev) and substituted it.
Changed to the BDEV variant to this format as well: bdevsw(dev_t dev)
DEVFS will eventually benefit from this change too.
Virtualize bdevsw[] from cdevsw. bdevsw() is now an (inline)
function.
Join CDEV_MODULE and BDEV_MODULE to DEV_MODULE (please pay attention
to the order of the cmaj/bmaj arguments!)
Join CDEV_DRIVER_MODULE and BDEV_DRIVER_MODULE to DEV_DRIVER_MODULE
(ditto!)
(Next step will be to convert all bdev dev_t's to cdev dev_t's
before they get to do any damage^H^H^H^H^H^Hwork in the kernel.)
including alan, john, me, luoqi, and kirk
Submitted by: Matt Dillon <dillon@frebsd.org>
This change implements a relatively sophisticated fix to getnewbuf().
There were two problems with getnewbuf(). First, the writerecursion
can lead to a system stack overflow when you have NFS and/or VN
devices in the system. Second, the free/dirty buffer accounting was
completely broken. Not only did the nfs routines blow it trying to
manually account for the buffer state, but the accounting that was
done did not work well with the purpose of their existance: figuring
out when getnewbuf() needs to sleep.
The meat of the change is to kern/vfs_bio.c. The remaining diffs are
all minor except for NFS, which includes both the fixes for bp
interaction AND fixes for a 'biodone(): buffer already done' lockup.
Sys/buf.h also contains a chaining structure which is not used by
this patchset but is used by other patches that are coming soon.
This patch deliniated by tags PRE_MAT_GETBUF and POST_MAT_GETBUF.
(sorry for the missing T matt)
Add d_parms() to {c,b}devsw[]. If non-NULL this function points to
a device routine that will properly fill in the specinfo structure.
vfs_subr.c's checkalias() supplies appropriate defaults. This change
should be fully backwards compatible with existing devices.
completes, change if() to KASSERT(). This is not a bug, we are
simplify clarifying and optimizing the code.
In if/else in vfs_object_create(), the failure of both conditionals
will lead to a NULL object. Exit gracefully if this case occurs.
( this case does not normally occur, but needed to be handled ).
Obtained from: Eivind Eklund <eivind@FreeBSD.org>
changes to the VM system to support the new swapper, VM bug
fixes, several VM optimizations, and some additional revamping of the
VM code. The specific bug fixes will be documented with additional
forced commits. This commit is somewhat rough in regards to code
cleanup issues.
Reviewed by: "John S. Dyson" <root@dyson.iquest.net>, "David Greenman" <dg@root.com>
merge). This fixes at least hanging in revoke(2) when a somewhat
active slave pty is revoked. The hang made the window for the
null pointer bug in ufsspec_{read,write} much larger.
There are many other bugs in this area (revoke of an active fifo
at best leaks memory...).
there does not seem to be a problem with this.
PR: kern/8732
Analysis by: David G Andersen <danderse@cs.utah.edu>
Tested by: Alfred Perlstein <bright@hotjobs.com>
for possible buffer overflow problems. Replaced most sprintf()'s
with snprintf(); for others cases, added terminating NUL bytes where
appropriate, replaced constants like "16" with sizeof(), etc.
These changes include several bug fixes, but most changes are for
maintainability's sake. Any instance where it wasn't "immediately
obvious" that a buffer overflow could not occur was made safer.
Reviewed by: Bruce Evans <bde@zeta.org.au>
Reviewed by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Mike Spengler <mks@networkcs.com>
- Use TAILQ_* macros extensively instead of internal names
- use b_xflags instead of the NOLIST magic number hack in the next pointer
- clean bufs are inserted at the tail rather than the head.
- redo dirty buffer insert so that metadata (negative lbn) goes to the
tail directly rather than at the HEAD. This makes a difference when
inserting dirty data blocks in lbn sorted order since data block
insertion will not have to bypass all the metadata cruft. data is
lbn sorted since it makes sense for clustering and writeback ordering,
while metadata sorting doesn't help much since the lbn's are
meaningless when walking the list for writebacks.
Small systems will not notice much (if any) benefit from this, but really
busy systems with large dirty block lists should get a lot more.
I've tested this with softdep, and it doesn't seem to mind the change of
queueing of metadata.
Reviewed (in princible) by: dg
Obtained from: partly from John Dyson's work-in-progress patches in June.
the old true/false.
While here, have vfs_msync() only call vm_object_page_clean() with
OBJPC_SYNC if called with MNT_WAIT flags. vfs_msync() is called at unmount
time (with MNT_WAIT) and from the syncer process (formerly update).
This should make dirty mmap writebacks a little less nasty.
I have tested this a little with SOFTUPDATES enabled, but I don't normally
use it since I've been badly burned too many times.
clear if the check is necessary, but vfs_object_create() is called
for all vnodes and it was silly to create objects for VBLK vnodes
that don't even have a driver.
- dev != NODEV was checked for, but 0 was returned on failure. This was
fixed in Lite2 (except the return code was still slightly wrong (ENODEV
instead of ENXIO)) but the changes were not merged. This case probably
doesn't actually occur under FreeBSD.
- major(dev) was not checked to have a valid non-NULL bdevsw entry. This
caused panics when the driver for the root device didn't exist.
Fixed minor misformattings in bdevvp(). Rev.1.14 consisted mainly of
gratuitous reformattings that seem to have caused many Lite2 merge
errors.
PR: 8417
1) The vnode pager wasn't properly tracking the file size due to
"size" being page rounded in some cases and not in others.
This sometimes resulted in corrupted files. First noticed by
Terry Lambert.
Fixed by changing the "size" pager_alloc parameter to be a 64bit
byte value (as opposed to a 32bit page index) and changing the
pagers and their callers to deal with this properly.
2) Fixed a bogus type cast in round_page() and trunc_page() that
caused some 64bit offsets and sizes to be scrambled. Removing
the cast required adding casts at a few dozen callers.
There may be problems with other bogus casts in close-by
macros. A quick check seemed to indicate that those were okay,
however.
things, like msdosfs, do not work (panic) on devices with VMIO enabled.
FFS enable VMIO on mounted devices, and nothing previously disabled it, so,
after you mounted FFS floppy, you could not mount msdosfs floppy anymore...)
This is mostly a quick before-release fix.
Reviewed by: bde
when nfs is an LKM. Declare it in a header file. Don't forget to use
it in non-Lite2 code. Initialize it to -1 instead of to 0, since 0
will soon be the mount type number for the first vfs loaded.
NetBSD uses strcmp() to avoid this ugly global.
Fix for potential hang when trying to reboot the system or
to forcibly unmount a soft update enabled filesystem.
FreeBSD already handled the reboot case differently, this is however a better
fix.
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.
The prototype FreeBSD/alpha machdep will follow in a couple of days
time.
This code will be turned on with the TWO options
DEVFS and SLICE. (see LINT)
Two labels PRE_DEVFS_SLICE and POST_DEVFS_SLICE will deliniate these changes.
/dev will be automatically mounted by init (thanks phk)
on bootup. See /sys/dev/slice/slice.4 for more info.
All code should act the same without these options enabled.
Mike Smith, Poul Henning Kamp, Soeren, and a few dozen others
This code does not support the following:
bad144 handling.
Persistance. (My head is still hurting from the last time we discussed this)
ATAPI flopies are not handled by the SLICE code yet.
When this code is running, all major numbers are arbitrary and COULD
be dynamically assigned. (this is not done, for POLA only)
Minor numbers for disk slices ARE arbitray and dynamically assigned.
(ie: it has a vm_object attached and is marked as OBJ_MIGHTBEDIRTY) before
attempting to lock it. This should reduce the cpu hit that is incurred
when doing a sync(2) and when the syncer process is doing the 30-second
writeback of dirty mmap() data to disk. Skip this speedup if we are
doing an unmount() to be sure to get everything - we can afford to
occasionally miss a msync while the system is running, but not at unmount.
I'm not sure about the VXLOCK and MNT_WAIT case, it seems a bit odd to skip
doing a page_clean at unmount time just because a vnode is VXLOCKed, but
that's what was being done before...
update got lost. This is responsible for ensuring that dirty mmap() pages
get periodically written to disk. Without it, long time mmap's might not
have their dirty pages written out at all of the system crashes or isn't
cleanly shut down. This could be nasty if you've got a long-running
writing via mmap(), dirty pages used to get written to disk within 30
seconds or so.
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.
Most uses of time.tv_sec now uses the new variable time_second instead.
gettime() changed to getmicrotime(0.
Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).
A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.
Add a new nfs_curusec() function.
Mark a couple of bogosities involving the now disappeard time variable.
Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.
Change profiling in ncr.c to use ticks instead of time. Resolution is
the same.
Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.
Reviewed by: bde
In vfs_bio.c, remove b_generation count usage,
remove redundant reassignbuf,
remove redundant spl(s),
manage page PG_ZERO flags more correctly,
utilize in invalid value for b_offset until it
is properly initialized. Add asserts
for #ifdef DIAGNOSTIC, when b_offset is
improperly used.
when a process is not performing I/O, and just waiting
on a buffer generally, make the sleep priority
low.
only check page validity in getblk for B_VMIO buffers.
In vfs_cluster, add b_offset asserts, correct pointer calculation
for clustered reads. Improve readability of certain parts of
the code. Remove redundant spl(s).
In vfs_subr, correct usage of vfs_bio_awrite (From Andrew Gallatin
<gallatin@cs.duke.edu>). More vtruncbuf problems fixed.
me any problems until after the previous commit. This problem then
caused a severe case of creeping crud on my diskdrive, and hosed
my system so bad, that I needed to do a complete reinstall. Sorry!!!
I assume that others have manifest this bug.
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
2) Do not unnecessarily force page blocking when paging
pages out.
3) Further improve swap pager performance and correctness,
including fixing the paging in progress deadlock (except
in severe I/O error conditions.)
4) Enable vfs_ioopt=1 as a default.
5) Fix and enable the page prezeroing in SMP mode.
All in all, SMP systems especially should show a significant
improvement in "snappyness."
vnodes, therefore vget doesn't need to do so anymore. Other minor
improvements include the temp free vnode queue obeying the VAGE
flag and a printf that warns of to-be-removed code being executed.
waslocked = TRUE. This change may fix lockmgr panic in umapfs/nullfs.
PR: 5634
Reviewed by: "John S. Dyson" <toor@dyson.iquest.net>
Suggested by: Bruce Evans <bde@zeta.org.au>
of the various ad-hoc schemes.
2) When bringing in UPAGES, the pmap code needs to do another vm_page_lookup.
3) When appropriate, set the PG_A or PG_M bits a-priori to both avoid some
processor errata, and to minimize redundant processor updating of page
tables.
4) Modify pmap_protect so that it can only remove permissions (as it
originally supported.) The additional capability is not needed.
5) Streamline read-only to read-write page mappings.
6) For pmap_copy_page, don't enable write mapping for source page.
7) Correct and clean-up pmap_incore.
8) Cluster initial kern_exec pagin.
9) Removal of some minor lint from kern_malloc.
10) Correct some ioopt code.
11) Remove some dead code from the MI swapout routine.
12) Correct vm_object_deallocate (to remove backing_object ref.)
13) Fix dead object handling, that had problems under heavy memory load.
14) Add minor vm_page_lookup improvements.
15) Some pages are not in objects, and make sure that the vm_page.c can
properly support such pages.
16) Add some more page deficit handling.
17) Some minor code readability improvements.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
config option in pmap. Fix a problem with faulting in pages. Clean-up
some loose ends in swap pager memory management.
The system should be much more stable, but all subtile bugs aren't fixed yet.
Fix the UIO optimization code.
Fix an assumption in vm_map_insert regarding allocation of swap pagers.
Fix an spl problem in the collapse handling in vm_object_deallocate.
When pages are freed from vnode objects, and the criteria for putting
the associated vnode onto the free list is reached, either put the
vnode onto the list, or put it onto an interrupt safe version of the
list, for further transfer onto the actual free list.
Some minor syntax changes changing pre-decs, pre-incs to post versions.
Remove a bogus timeout (that I added for debugging) from vn_lock.
PHK will likely still have problems with the vnode list management, and
so do I, but it is better than it was.
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
of vnodes and objects. There are some metadata performance improvements
that come along with this. There are also a few prototypes added when
the need is noticed. Changes include:
1) Cleaning up vref, vget.
2) Removal of the object cache.
3) Nuke vnode_pager_uncache and friends, because they aren't needed anymore.
4) Correct some missing LK_RETRY's in vn_lock.
5) Correct the page range in the code for msync.
Be gentle, and please give me feedback asap.
if one of the new poll types is requested; hopefully this will not break
any existing code. (This is done so that programs have a dependable
way of determining whether a filesystem supports the extended poll types
or not.)
The new poll types added are:
POLLWRITE - file contents may have been modified
POLLNLINK - file was linked, unlinked, or renamed
POLLATTRIB - file's attributes may have been changed
POLLEXTEND - file was extended
Note that the internal operation of poll() means that it is impossible
for two processes to reliably poll for the same event (this could
be fixed but may not be worth it), so it is not possible to rewrite
`tail -f' to use poll at this time.
Ever since I first say the way the mount flags were used I've hated the
fact that modes, and events, internal and exported, and short-term
and long term flags are all thrown together. Finally it's annoyed me enough..
This patch to the entire FreeBSD tree adds a second mount flag word
to the mount struct. it is not exported to userspace. I have moved
some of the non exported flags over to this word. this means that we now
have 8 free bits in the mount flags. There are another two that might
well move over, but which I'm not sure about.
The only user visible change would have been in pstat -v, except
that davidg has disabled it anyhow.
I'd still like to move the state flags and the 'command' flags
apart from each other.. e.g. MNT_FORCE really doesn't have the
same semantics as MNT_RDONLY, but that's left for another day.
Rename vn_default_error to vop_defaultop all over the place.
Move vn_bwrite from vfs_bio.c to vfs_default.c and call it vop_stdbwrite.
Use vop_null instead of nullop.
Move vop_nopoll from vfs_subr.c to vfs_default.c
Move vop_sharedlock from vfs_subr.c to vfs_default.c
Move vop_nolock from vfs_subr.c to vfs_default.c
Move vop_nounlock from vfs_subr.c to vfs_default.c
Move vop_noislocked from vfs_subr.c to vfs_default.c
Use vop_ebadf instead of *_ebadf.
Add vop_defaultop for getpages on master vnode in MFS.
Distribute all but the most fundamental malloc types. This time I also
remembered the trick to making things static: Put "static" in front of
them.
A couple of finer points by: bde
(usually a couple of thousand) to 25. The measured impact on cache-hits
doesn't justify spending memory this way:
Target number of free vnodes versus namecache hit rate in % during a
make world:
10 98.5316
200 98.5479
500 98.5546
1000 98.5709
3000 98.6006
4000 98.6126
Introduce VFREE which indicates that vnode is on freelist.
Rename vholdrele() to vdrop().
Create vfree() and vbusy() to add/delete vnode from freelist.
Add vfree()/vbusy() to keep (v_holdcnt != 0 || v_usecount != 0)
vnodes off the freelist.
Generalize vhold()/v_holdcnt to mean "do not recycle".
Fix reassignbuf()s lack of use of vhold().
Use vhold() instead of checking v_cache_src list.
Remove vtouch(), the vnodes are always vget'ed soon enough
after for it to have any measuable effect.
Add sysctl debug.freevnodes to keep track of things.
Move cache_purge() up in getnewvnodes to avoid race.
Decrement v_usecount after VOP_INACTIVE(), put a vhold() on
it during VOP_INACTIVE()
Unmacroize vhold()/vdrop()
Print out VDOOMED and VFREE flags (XXX: should use %b)
Reviewed by: dyson
free list problem. Also, the vnode age flag is no longer used by the
vnode pager. (It is actually incorrect to use then.) Constructive
feedback welcome -- just be kind.
socket addresses in mbufs. (Socket buffers are the one exception.) A number
of kernel APIs needed to get fixed in order to make this happen. Also,
fix three protocol families which kept PCBs in mbufs to not malloc them
instead. Delete some old compatibility cruft while we're at it, and add
some new routines in the in_cksum family.
enough and can cause some strange performance problems. Specifically, at
or near startup time is when the problem is worst. To reproduce
the problem, run "lat_syscall stat" from the alpha lmbench code right
after bootup. A positive side effect of this mod is that the name
cache can be set to grow again by sysctl. A noticable positive
performance impact is realized due to a larger namecache being available
as needed (or tuned.)
flag wasn't being respected during vref(), et. al. Note that this
isn't the eventual fix for the locking problem. Fine grained SMP
in the VM and VFS code will require (lots) more work.
".." vnode. This is cheaper storagewise than keeping it in the
namecache, and it makes more sense since it's a 1:1 mapping.
2. Also handle the case of "." more intelligently rather than stuff
the namecache with pointless entries.
3. Add two lists to the vnode and hang namecache entries which go from
or to this vnode. When cleaning a vnode, delete all namecache
entries it invalidates.
4. Never reuse namecache enties, malloc new ones when we need it, free
old ones when they die. No longer a hard limit on how many we can
have.
5. Remove the upper limit on namelength of namecache entries.
6. Make a global list for negative namecache entries, limit their number
to a sysctl'able (debug.ncnegfactor) fraction of the total namecache.
Currently the default fraction is 1/16th. (Suggestions for better
default wanted!)
7. Assign v_id correctly in the face of 32bit rollover.
8. Remove the LRU list for namecache entries, not needed. Remove the
#ifdef NCH_STATISTICS stuff, it's not needed either.
9. Use the vnode freelist as a true LRU list, also for namecache accesses.
10. Reuse vnodes more aggresively but also more selectively, if we can't
reuse, malloc a new one. There is no longer a hard limit on their
number, they grow to the point where we don't reuse potentially
usable vnodes. A vnode will not get recycled if still has pages in
core or if it is the source of namecache entries (Yes, this does
indeed work :-) "." and ".." are not namecache entries any longer...)
11. Do not overload the v_id field in namecache entries with whiteout
information, use a char sized flags field instead, so we can get
rid of the vpid and v_id fields from the namecache struct. Since
we're linked to the vnodes and purged when they're cleaned, we don't
have to check the v_id any more.
12. NFS knew about the limitation on name length in the namecache, it
shouldn't and doesn't now.
Bugs:
The namecache statistics no longer includes the hits for ".."
and "." hits.
Performance impact:
Generally in the +/- 0.5% for "normal" workstations, but
I hope this will allow the system to be selftuning over a
bigger range of "special" applications. The case where
RAM is available but unused for cache because we don't have
any vnodes should be gone.
Future work:
Straighten out the namecache statistics.
"desiredvnodes" is still used to (bogusly ?) size hash
tables in the filesystems.
I have still to find a way to safely free unused vnodes
back so their number can shrink when not needed.
There is a few uses of the v_id field left in the filesystems,
scheduled for demolition at a later time.
Maybe a one slot cache for unused namecache entries should
be implemented to decrease the malloc/free frequency.
implementation #ifdef out. This can be used for now by NFS. As soon
as all the other filesystems' locking is fixed, this can go away.
Print the vnode address in vprint for easier debugging.
(phk's) sysctl framework, and I needed special code to disambiguate
the VFS_GENERIC node from the VFS_VFSCONF leaf, so I only converted
the leaves to the FreeBSD framework. The error handling isn't quite
right. CSRGS's sysctls seem to return ENOTDIR too much and FreeBSD's
sysctls don't agree with the man page.
and getvfsbyname() interfaces. The new interfaces are now hidden from
applications unless _NEW_VFSCONF is defined. The new vfsconf interfaces
don't work yet.
- getnewvnode() and vref() were missing one simple_unlock() each.
- the Lite2 locking changes weren't merged at all in
printlockedvnodes() or sysctl_vnode(). Merging these undid
some KNF style regressions.
changes, so don't expect to be able to run the kernel as-is (very well)
without the appropriate Lite/2 userland changes.
The system boots and can mount UFS filesystems.
Untested: ext2fs, msdosfs, NFS
Known problems: Incorrect Berkeley ID strings in some files.
Mount_std mounts will not work until the getfsent
library routine is changed.
Reviewed by: various people
Submitted by: Jeffery Hsu <hsu@freebsd.org>
variable `kern.maxvnodes' which gives much better control over vnode
allocation than EXTRAVNODES (except in -current between 1995/10/28 and
1996/11/12, kern.maxvnodes was read-only and thus useless).
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
Firstly, now our read-ahead clustering is on a file descriptor basis and not
on a per-vnode basis. This will allow multiple processes reading the
same file to take advantage of read-ahead clustering. Secondly, there
previously was a problem with large reads still using the ramp-up
algorithm. Of course, that was bogus, and now we read the entire
"chunk" off of the disk in one operation. The read-ahead clustering
algorithm should use less CPU than the previous also (I hope :-)).
NOTE: THAT LKMS MUST BE REBUILT!!!
add free vnodes back to the freelist. They must do their own vnode
management. Anyway, this change is *only* activated with their filesystem
and doesn't affect anyone else. Whoops, forgot the submitted-by lines
in my previous commits too.. :-(
Submitted-By: Tony Ardolino <tony@netcon.com>
/*
* Structure defined by POSIX.4 to be like a timeval.
*/
struct timespec {
time_t ts_sec; /* seconds */
long ts_nsec; /* and nanoseconds */
};
The correct names of the fields are tv_sec and tv_nsec.
Reminded by: James Drobina <jdrobina@infinet.com>
The interface into the "VMIO" system has changed to be more consistant
and robust. Essentially, it is now no longer necessary to call vn_open
to get merged VM/Buffer cache operation, and exceptional conditions
such as merged operation of VBLK devices is simpler and more correct.
This code corrects a potentially large set of problems including the
problems with ktrace output and loaded systems, file create/deletes,
etc.
Most of the changes to NFS are cosmetic and name changes, eliminating
a layer of subroutine calls. The direct calls to vput/vrele have
been re-instituted for better cross platform compatibility.
Reviewed by: davidg
to be allocated at boot time. This is an expensive option, as they
consume physical ram and are not pageable etc. In certain situations,
this kind of option is quite useful, especially for news servers that
access a large number of directories at random and torture the name cache.
Defining 5000 or 10000 extra vnodes should cut down the amount of vnode
recycling somewhat, which should allow better name and directory caching
etc.
This is a "your mileage may vary" option, with no real indication of
what works best for your machine except trial and error. Too many will
cost you ram that you could otherwise use for disk buffers etc.
This is based on something John Dyson mentioned to me a while ago.
Speed up for vfs_bio -- addition of a routine bqrelse to greatly diminish
overhead for merged cache.
Efficiency improvement for vfs_cluster. It used to do alot of redundant
calls to cluster_rbuild.
Correct the ordering for vrele of .text and release of credentials.
Use the selective tlb update for 486/586/P6.
Numerous fixes to the size of objects allocated for files. Additionally,
fixes in the various pagers.
Fixes for proper positioning of vnode_pager_setsize in msdosfs and ext2fs.
Fixes in the swap pager for exhausted resources. The pageout code
will not as readily thrash.
Change the page queue flags (PG_ACTIVE, PG_INACTIVE, PG_FREE, PG_CACHE) into
page queue indices (PQ_ACTIVE, PQ_INACTIVE, PQ_FREE, PQ_CACHE),
thereby improving efficiency of several routines.
Eliminate even more unnecessary vm_page_protect operations.
Significantly speed up process forks.
Make vm_object_page_clean more efficient, thereby eliminating the pause
that happens every 30seconds.
Make sequential clustered writes B_ASYNC instead of B_DELWRI even in the
case of filesystems mounted async.
Fix a panic with busy pages when write clustering is done for non-VMIO
buffers.
Unstaticize a function in scsi/scsi_base that was used, with an undocumented
option.
My last count on the LINT kernel shows:
Total symbols: 3647
unref symbols: 463
undef symbols: 4
1 ref symbols: 1751
2 ref symbols: 485
Approaching the pain threshold now.
Convert the remaining sysctl stuff to the new way of doing things.
the devconf stuff is the reason for the large number of files.
Cleaned up some compiler warnings while I were there.
it 1138 times (:-() in casts and a few more times in declarations.
This change is null for the i386.
The type has to be `typedef int vop_t(void *)' and not `typedef
int vop_t()' because `gcc -Wstrict-prototypes' warns about the
latter. Since vnode op functions are called with args of different
(struct pointer) types, neither of these function types is any use
for type checking of the arg, so it would be preferable not to use
the complete function type, especially since using the complete
type requires adding 1138 casts to avoid compiler warnings and
another 40+ casts to reverse the function pointer conversions before
calling the functions.
PR 795.
Set the size before one error return from sysctl_vnode() the same as before
the other. The caller might want to know about the amount successfully
read although the current caller doesn't.
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
2) Removed unnecessary vm_object_lookup()/pager_cache(object, TRUE) pairs
after vnode_pager_alloc() calls - the object is already guaranteed to be
persistent.
3) Removed some gratuitous casts.
VOP_CLOSE() takes `F' (file) flags, not `IO' flags. At least that's
what close() passes. I previously fixed ttylclose() to check
FNONBLOCK instead of IO_NDELAY. This broke the call from vclean()
and cleaning of ptys sometimes deadlocked.
1) Files weren't properly synced on filesystems other than UFS. In some
cases, this lead to lost data. Most likely would be noticed on NFS.
The fix is to make the VM page sync/object_clean general rather than
in each filesystem.
2) Mixing regular and mmaped file I/O on NFS was very broken. It caused
chunks of files to end up as zeroes rather than the intended contents.
The fix was to fix several race conditions and to kludge up the
"b_dirtyoff" and "b_dirtyend" that NFS relies upon - paying attention
to page modifications that occurred via the mmapping.
Reviewed by: David Greenman
Submitted by: John Dyson
is more representative of worst case situations of 4 files/directory. (If
that last sentence doesn't make any sense, I'm not surprised. It's rather
compilcated how this all fits together....).
This should fix a problem that Ed Hudson has been complaining about where
directories with lots of symlinks could cause excessive disk I/O.
Fixed remaining known bugs in the buffer IO and VM system.
vfs_bio.c:
Fixed some race conditions and locking bugs. Improved performance
by removing some (now) unnecessary code and fixing some broken
logic.
Fixed process accounting of # of FS outputs.
Properly handle NFS interrupts (B_EINTR).
(various)
Replaced calls to clrbuf() with calls to an optimized routine
call vfs_bio_clrbuf().
(various FS sync)
Sync out modified vnode_pager backed pages.
ffs_vnops.c:
Do two passes: Sync out file data first, then indirect blocks.
vm_fault.c:
Fixed deadly embrace caused by acquiring locks in the wrong order.
vnode_pager.c:
Changed to use buffer I/O system for writing out modified pages. This
should fix the problem with the modification date previous not getting
updated. Also dramatically simplifies the code. Note that this is
going to change in the future and be implemented via VOP_PUTPAGES().
vm_object.c:
Fixed a pile of bugs related to cleaning (vnode) objects. The performance
of vm_object_page_clean() is terrible when dealing with huge objects,
but this will change when we implement a binary tree to keep the object
pages sorted.
vm_pageout.c:
Fixed broken clustering of pageouts. Fixed race conditions and other
lockup style bugs in the scanning of pages. Improved performance.
1. We always keep one 16th of the vnodes on the freelist, so that the
namecache doesn't get trashed. It used to be that it wasn't a problem, but
the only vnodes getting released these days are directories and things which
Clean up and improve the namecache.
1. We always keep one 16th of the vnodes on the freelist, so that the
namecache doesn't get trashed. It used to be that it wasn't a problem, but
the only vnodes getting released these days are directories and things which
gets forced out of the VM/cache. The latter is not numerous enough to keep
the pool of vnodes needed for the namecache sufficiently big.
2. Purge invalid entries in the namecache as soon as we notice them. This
avoids a stale entry pushing out a valid entry on the LRU list.
3. Speed up the lookup in the namecache by avoid a special case branch.
4. Make the cache purge routines do the thing they're supposed to, and in
a decently efficient manner.
5. Make the size of the namecache follow the number of vnodes, so that we
can always point to all the vnodes we have in core.
6. Readability has gone way up.
7. Added a "options NCH_STATISTICS" feature that will gather more
detailed statistics on the performance of the namecache.
Reviewed by: davidg
(cvs is dumping core on me :-( )
may not properly initialize this field in all cases, and this would
result in very anti-social behavior (overwriting on some other random
device/location).
Submitted by: John Dyson
Various more tweaks from John Dyson to improve read ahead calculations.
vfs_subr.c:
Only wakeup if numoutput is 0 in vwakeup().
Submitted by: John Dyson
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
cycles. While waiting there I added a lot of the extra ()'s I have, (I have
never used LISP to any extent). So I compiled the kernel with -Wall and
shut up a lot of "suggest you add ()'s", removed a bunch of unused var's
and added a couple of declarations here and there. Having a lap-top is
highly recommended. My kernel still runs, yell at me if you kernel breaks.
machdep.c:
Changed printf's a little and call vfs_unmountall() if the sync was
successful.
cd9660_vfsops.c, ffs_vfsops.c, nfs_vfsops.c, lfs_vfsops.c:
Allow dismount of root FS. It is now disallowed at a higher level.
vfs_conf.c:
Removed unused rootfs global.
vfs_subr.c:
Added new routines vfs_unmountall and vfs_unmountroot. Filesystems
are now dismounted if the machine is properly rebooted.
ffs_vfsops.c:
Toggle clean bit at the appropriate places. Print warning if an
unclean FS is mounted.
ffs_vfsops.c, lfs_vfsops.c:
Fix bug in selecting proper flags for VOP_CLOSE().
vfs_syscalls.c:
Disallow dismounting root FS via umount syscall.
- Delete redundant declarations.
- Add -Wredundant-declarations to Makefile.i386 so they don't come back.
- Delete sloppy COMMON-style declarations of uninitialized data in
header files.
- Add a few prototypes.
- Clean up warnings resulting from the above.
NB: ioconf.c will still generate a redundant-declaration warning, which
is unavoidable unless somebody volunteers to make `config' smarter.