__attribute__((format(...))), and the -fformat-extensions flag was
removed, introduce a new macro in bsd.sys.mk to choose the right variant
of compile flag for the used compiler, and use it.
Also add something similar to kern.mk, since including bsd.sys.mk from
that file will anger Warner. :-)
Note that bsd.sys.mk does not support the MK_FORMAT_EXTENSIONS knob used
in kern.mk, since that knob is only available in kern.opts.mk, not in
src.opts.mk. We might want to add it later, to more easily support
external compilers for building world (in particular, sys/boot).
The data in MODINFOMD_MODULEP is packed by the loader as a 4 byte type, but
the amd64 kernel expects a vm_paddr_t, which is of size 8 bytes. Fix this by
saving it as 8 bytes in the loader and retrieving it using the proper type
in the kernel.
Sponsored by: Citrix Systems R&D
Implement a subset of the multiboot specification in order to boot Xen
and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot
implementation is tailored to boot Xen and FreeBSD Dom0, and it will
most surely fail to boot any other multiboot compilant kernel.
In order to detect and boot the Xen microkernel, two new file formats
are added to the bootloader, multiboot and multiboot_obj. Multiboot
support must be tested before regular ELF support, since Xen is a
multiboot kernel that also uses ELF. After a multiboot kernel is
detected, all the other loaded kernels/modules are parsed by the
multiboot_obj format.
The layout of the loaded objects in memory is the following; first the
Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to
long mode by itself), after that the FreeBSD kernel is loaded as a RAW
file (Xen will parse and load it using it's internal ELF loader), and
finally the metadata and the modules are loaded using the native
FreeBSD way. After everything is loaded we jump into Xen's entry point
using a small trampoline. The order of the multiboot modules passed to
Xen is the following, the first module is the RAW FreeBSD kernel, and
the second module is the metadata and the FreeBSD modules.
Since Xen will relocate the memory position of the second
multiboot module (the one that contains the metadata and native
FreeBSD modules), we need to stash the original modulep address inside
of the metadata itself in order to recalculate its position once
booted. This also means the metadata must come before the loaded
modules, so after loading the FreeBSD kernel a portion of memory is
reserved in order to place the metadata before booting.
In order to tell the loader to boot Xen and then the FreeBSD kernel the
following has to be added to the /boot/loader.conf file:
xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga"
xen_kernel="/boot/xen"
The first argument contains the command line that will be passed to the Xen
kernel, while the second argument is the path to the Xen kernel itself. This
can also be done manually from the loader command line, by for example
typing the following set of commands:
OK unload
OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga
OK load kernel
OK load zfs
OK load if_tap
OK load ...
OK boot
Sponsored by: Citrix Systems R&D
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D517
For the Forth bits:
Submitted by: Julien Grall <julien.grall AT citrix.com>
bootloader. Implement the following routines:
pcibios-device-count count the number of instances of a devid
pcibios-read-config read pci config space
pcibios-write-config write pci config space
pcibios-find-devclass find the nth device with a given devclass
pcibios-find-device find the nth device with a given devid
pcibios-locator convert bus device function ti pcibios locator
These commands are thin wrappers over their PCI BIOS 2.1 counterparts. More
informaiton, such as it is, can be found in the standard.
Export a nunmber of pcibios.X variables into the environment to report
what the PCI IDENTIFY command returned.
Also implmenet a new command line primitive (pci-device-count), but don't
include it by default just yet, since it depends on the recently added
words and any errors here can render a system unbootable.
This is intended to allow the boot loader to do special things based
on the hardware it finds. This could be have special settings that are
optimized for the specific cards, or even loading special drivers. It
goes without saying that writing to pci config space should not be
done without a just cause and a sound mind.
Sponsored by: Netflix
place for the NFS-based PXE loader. Information like rootpath
or rootip aren't that useful for TFTP and the gateway IP is
typically already printed by the firmware.
2. Only set boot.nfsroot.* environment variables for NFS. This
makes it possible for the OS to work either way by checking
for the presence or absence of environment variables.
3. Set boot.netif.server when using TFTP so that the OS can fetch
files as well. A typical use case for this is network-based
installations with the installation process implemented on
top of FreeBSD.
4. The pxelinux loader has a set of alternative names it tries
for configuration files. Make it easier to do something
similar in Forth by providing the IP address as a 32-bit hex
number in the pxeboot.ip variable and the MAC address with
dashes in the pxeboot.hwaddr environment variable.
Obtained from: Juniper Networks, Inc.
particular, allow loaders to define the name of the RC script the
interpreter needs to use. Use this new-found control to have the
PXE loader (when compiled with TFTP support and not NFS support)
read from ${bootfile}.4th, where ${bootfile} is the name of the
file fetched by the PXE firmware.
The normal startup process involves reading the following files:
1. /boot/boot.4th
2. /boot/loader.rc or alternatively /boot/boot.conf
When these come from a FreeBSD-defined file system, this is all
good. But when we boot over the network, subdirectories and fixed
file names are often painful to administrators and there's really
no way for them to change the behaviour of the loader.
Obtained from: Juniper Networks, Inc.
Setting PSE together with PAE or in long mode just makes the PSE bit
completely ignored, so don't set it.
Sponsored by: Citrix Systems R&D
Reviewed by: kib
comconsole setup. Previously the hint would be set when if you set a
custom port, but it would not be updated if you later set a custom speed.
Also, leave the hw.uart.console hint mutable so it can be overridden or
unset by the user if needed.
Reviewed by: kib (earlier version)
MFC after: 1 week
- clear capability flags when hw timeouts
- retire comc_started status variable and directly use c_flags to see
if comconsole is selected for use
Reviewed by: jhb
Tested by: Uffe Jakobsen <uffe@uffe.org>,
Olivier Cochard-Labbe <olivier@cochard.me>
MFC after: 26 days
disk_open(). Very often this is called several times for one file.
This leads to reading partition table metadata for each call. To
reduce the number of disk I/O we have a simple block cache, but it
is very dumb and more than half of I/O operations related to reading
metadata, misses this cache.
Introduce new cache layer to resolve this problem. It is independent
and doesn't need initialization like bcache, and will work by default
for all loaders which use the new DISK API. A successful disk_open()
call to each new disk or partition produces new entry in the cache.
Even more, when disk was already open, now opening of any nested
partitions does not require reading top level partition table.
So, if without this cache, partition table metadata was read around
20-50 times during boot, now it reads only once. This affects the booting
from GPT and MBR from the UFS.
in sys/boot/i386/libi386/biosdisk.c. Otherwise, when DISK_DEBUG is
enabled, the DEBUG() macros will clobber those fields, and cause the
probing to always fail mysteriously when debugging is enabled.
In zfs loader zfs device name format now is "zfs:pool/fs",
fully qualified file path is "zfs:pool/fs:/path/to/file"
loader allows accessing files from various pools and filesystems as well
as changing currdev to a different pool/filesystem.
zfsboot accepts kernel/loader name in a format pool:fs:path/to/file or,
as before, pool:path/to/file; in the latter case a default filesystem
is used (pool root or bootfs). zfsboot passes guids of the selected
pool and dataset to zfsloader to be used as its defaults.
zfs support should be architecture independent and is provided
in a separate library, but architectures wishing to use this zfs support
still have to provide some glue code and their devdesc should be
compatible with zfs_devdesc.
arch_zfs_probe method is used to discover all disk devices that may
be part of ZFS pool(s).
libi386 unconditionally includes zfs support, but some zfs-specific
functions are stubbed out as weak symbols. The strong definitions
are provided in libzfsboot.
This change mean that the size of i386_devspec becomes larger
to match zfs_devspec.
Backward-compatibility shims are provided for recently added sparc64
zfs boot support. Currently that architecture still works the old
way and does not support the new features.
TODO:
- clear up pool root filesystem vs pool bootfs filesystem distinction
- update sparc64 support
- set vfs.root.mountfrom based on currdev (for zfs)
Mid-future TODO:
- loader sub-menu for selecting alternative boot environment
Distant future TODO:
- support accessing snapshots, using a snapshot as readonly root
Reviewed by: marius (sparc64),
Gavin Mu <gavin.mu@gmail.com> (sparc64)
Tested by: Florian Wagner <florian@wagner-flo.net> (x86),
marius (sparc64)
No objections: fs@, hackers@
MFC after: 1 month
get rid of testing explicitly for clang (using ${CC:T:Mclang}) in
individual Makefiles.
Instead, use the following extra macros, for use with clang:
- NO_WERROR.clang (disables -Werror)
- NO_WCAST_ALIGN.clang (disables -Wcast-align)
- NO_WFORMAT.clang (disables -Wformat and friends)
- CLANG_NO_IAS (disables integrated assembler)
- CLANG_OPT_SMALL (adds flags for extra small size optimizations)
As a side effect, this enables setting CC/CXX/CPP in src.conf instead of
make.conf! For clang, use the following:
CC=clang
CXX=clang++
CPP=clang-cpp
MFC after: 2 weeks
using LOADER_TFTP_SUPPORT excludes this code. Fixes compilation of pxeldr
with -DLOADER_TFTP_SUPPORT
Applicable to stable/9 and stable/8 now.
This appears to not be needed on stable/7 as r212126 has not been MFC'd.
Obtained from: Yahoo! Inc.
MFC after: 2 weeks
'comconsole_pcidev'. The former allows to set the base address of the
serial console i/o port. The later takes the string of the format
'bus:device:function:[bar]' as a value and uses the serial port attached
as PCI device at the specified location for console.
Both variants pass 'hw.uart.console' variable to the uart driver to
properly hand-over the kernel console.
Change allows to use ISA serial ports other than COM1 for the
loader/kernel console without loader recompilation. Also, you can use
PCI-attached port as the console, e.g. Intel AMT serial pseudo-port on
some motherboards based on Q67 chipset.
Reviewed by: jhb
MFC after: 2 weeks
At work, where we use use KVM+QEMU, we notice that pxeboot is pratically
impossible because of network timeouts. This is due to the fact that the
RTC code makes aggressive jumps.
Two RTC reads does not seem to be sufficient. Change the code to check
for 8 identical RTC values.
Sponsored by: Kumina bv
and constants related to the BIOS Enhanced Disk Drive Specification.
- Use this header instead of magic numbers and various duplicate structure
definitions for doing I/O.
- Use an actual structure for the request to fetch drive parameters in
drvsize() rather than a gross hack of a char array with some magic
size. While here, change drvsize() to only pass the 1.1 version of
the structure and not request device path information. If we want
device path information you have to set the length of the device
path information as an input (along with probably checking the actual
EDD version to see which size one should use as the device path
information is variable-length). This fixes data smashing problems
from passing an EDD 3 structure to BIOSes supporting EDD 4.
Reviewed by: avg
Tested by: Dennis Koegel dk neveragain.de
MFC after: 1 week
it possible to boot from ZFS RAIDZ for example from within VirtualBox.
The problem with VirtualBox is that its BIOS reports only one disk present.
If we choose to ignore this report, we can find all the disks available.
We can't have this work-around to be turned on by default, because some broken
BIOSes report true when it comes to number of disks, but present the same disk
multiple times.
the file handle's size and was recently committed to
lib/libstand/nfs.c. This allows pxeboot to use NFSv3 and work
correcty for non-FreeBSD as well as FreeBSD NFS servers.
If built with OLD_NFSV2 defined, the old
code that predated this patch will be used.
Tested by: danny at cs.huji.ac.il
heap when using a range above 1MB.
Previously the loader would always use the last 3MB in the first memory
range above 1MB for the heap. However, this memory range is also where the
kernel and any modules are loaded. If this memory range is "small", then
using the high 3MB for the heap may not leave enough room for the kernel
and modules.
Now the loader will use any range below 4GB for the heap, and the logic to
choose the "high" heap region has moved into biosmem.c. It sets two
variables that the loader can use for a high heap if it desires. When a
high heap is enabled (BZIP2, FireWire, GPT, or ZFS), then the following
memory ranges are preferred for the heap in order from best to worst:
- The largest memory region in the SMAP with a start address greater than
1MB. The memory region must be at least 3MB in length. This leaves the
region starting at 1MB purely for use by the kernel and modules.
- The last 3MB of the memory region starting at 1MB if it is at least 3MB
in size. This matches the current behavior except that the current loader
would break horribly if the first region was not at least 3MB in size.
- The memory range from the end of the loader up to the 640k window. This
is the range the loader uses when none of the high-heap-requesting options
are enabled.
Tested by: hrs
MFC after: 1 week
video console which doesn't take any input from keyboard and hides
all output replacing it with ``spinning'' character (useful for
embedded products and custom installations).
Sponsored by: Sippy Software, Inc.