virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
to global hostname and domainname variables. Where necessary, copy
to or from a stack-local buffer before performing copyin() or
copyout(). A few uses, such as in cd9660 and daemon_saver, remain
under-synchronized and will require further updates.
Correct a bug in which a failed copyin() of domainname would leave
domainname potentially corrupted.
MFC after: 3 weeks
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
previously conditionally acquired Giant based on debug.mpsafenet. As that
has now been removed, they are no longer required. Removing them
significantly simplifies error-handling in the socket layer, eliminated
quite a bit of unwinding of locking in error cases.
While here clean up the now unneeded opt_net.h, which previously was used
for the NET_WITH_GIANT kernel option. Clean up some related gotos for
consistency.
Reviewed by: bz, csjp
Tested by: kris
Approved by: re (kensmith)
except in places dealing with ifaddr creation or destruction; and
in such special places incomplete ifaddrs should never be linked
to system-wide data structures. Therefore we can eliminate all the
superfluous checks for "ifa->ifa_addr != NULL" and get ready
to the system crashing honestly instead of masking possible bugs.
Suggested by: glebius, jhb, ru
bootp -> BOOTP
bootp.nfsroot -> BOOTP_NFSROOT
bootp.nfsv3 -> BOOTP_NFSV3
bootp.compat -> BOOTP_COMPAT
bootp.wired_to -> BOOTP_WIRED_TO
- i.e. back out the previous commit. It's already possible to
pxeboot(8) with a GENERIC kernel.
Pointed out by: dwmalone
BOOTP -> bootp
BOOTP_NFSROOT -> bootp.nfsroot
BOOTP_NFSV3 -> bootp.nfsv3
BOOTP_COMPAT -> bootp.compat
BOOTP_WIRED_TO -> bootp.wired_to
This lets you PXE boot with a GENERIC kernel by putting this sort of thing
in loader.conf:
bootp="YES"
bootp.nfsroot="YES"
bootp.nfsv3="YES"
bootp.wired_to="bge1"
or even setting the variables manually from the OK prompt.
path to an absolute path without a host name. Previously, there was a
nasty POLA violation where a system would PXE boot until you added the
BOOTP option and then it would panic instead.
Reviewed by: tegge, Dirk-Willem van Gulik <dirkx at webweaving.org>
(a previous version)
Submitted by: tegge (getip function)
if_xname, if_dname, and if_dunit. if_xname is the name of the interface
and if_dname/unit are the driver name and instance.
This change paves the way for interface renaming and enhanced pseudo
device creation and configuration symantics.
Approved By: re (in principle)
Reviewed By: njl, imp
Tested On: i386, amd64, sparc64
Obtained From: NetBSD (if_xname)
This code dates back to the very first diskless support on FreeBSD,
back when swapon(8) couldn't simply be run on a NFS backed file.
Suggested replacement command sequence on the client:
dd if=/dev/zero of=/swapfile bs=1k count=1 oseek=100000
swapon /swapfile
rm -f /swapfile
For whatever value of 100000 you want.
1) avoid immediately calling bzero() after malloc() by passing M_ZERO
2) do not initialize individual members of the global context to zero
3) remove an unused assignment of ifctx in bootpc_init()
Reviewed by: tegge
o Add a mutex (sb_mtx) to struct sockbuf. This protects the data in a
socket buffer. The mutex in the receive buffer also protects the data
in struct socket.
o Determine the lock strategy for each members in struct socket.
o Lock down the following members:
- so_count
- so_options
- so_linger
- so_state
o Remove *_locked() socket APIs. Make the following socket APIs
touching the members above now require a locked socket:
- sodisconnect()
- soisconnected()
- soisconnecting()
- soisdisconnected()
- soisdisconnecting()
- sofree()
- soref()
- sorele()
- sorwakeup()
- sotryfree()
- sowakeup()
- sowwakeup()
Reviewed by: alfred
kernel BOOTP option. The format will be:
FreeBSD:<MACHINE>:<osrelease>
this way people can tune their DHCP server to server up root file systems
via the OS, machine type and version.
Obtained from: NetBSD
MFC after: 3 weeks
which is initialized with whatever string a dhcp/bootp server passes
as vendor tag 134.
There is no standard tag that I know with this information, and
no vendor-defined tag that applies to FreeBSD that I could find
doing the same thing.
The intended use is to pass information to userland for run-time
configuration of a diskless client without having to run a bootp/dhcp
client for the third time (after the one in pxeboot/etherboot, and
the one in the kernel bootp), also because these clients generally
screwup the interface configuration, which is not exactly what you
want when you have your disks nfs-mounted.
Manpage update to follow soon.
MFC-after: 3 days
socreate(), rather than getting it implicitly from the thread
argument.
o Make NFS cache the credential provided at mount-time, and use
the cached credential (nfsmount->nm_cred) when making calls to
socreate() on initially connecting, or reconnecting the socket.
This fixes bugs involving NFS over TCP and ipfw uid/gid rules, as well
as bugs involving NFS and mandatory access control implementations.
Reviewed by: freebsd-arch
1222 bytes (derived as the maximum that isc-dhcpd uses). This solves
the problem if a bootp/DHCP reply is over 256 bytes in which the
end of the bootp/DHCP reply will not be found and then the reply will
be ignored. This happens when swap and root paths are longish or many
parameters are set.
Reviewed by: imp
Approved by: imp
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
This is because calls with M_WAIT (now M_TRYWAIT) may not wait
forever when nothing is available for allocation, and may end up
returning NULL. Hopefully we now communicate more of the right thing
to developers and make it very clear that it's necessary to check whether
calls with M_(TRY)WAIT also resulted in a failed allocation.
M_TRYWAIT basically means "try harder, block if necessary, but don't
necessarily wait forever." The time spent blocking is tunable with
the kern.ipc.mbuf_wait sysctl.
M_WAIT is now deprecated but still defined for the next little while.
* Fix a typo in a comment in mbuf.h
* Fix some code that was actually passing the mbuf subsystem's M_WAIT to
malloc(). Made it pass M_WAITOK instead. If we were ever to redefine the
value of the M_WAIT flag, this could have became a big problem.