- 1.58 (2000/09/01; author: kato)
Fixed FPU_ERROR_BROKEN code. It had old-isa code.
- 1.33 (1998/03/09; author: kato)
Make FPU_ERROR_BROKEN a new-style option.
- 1.7 (1996/10/09; author: asami)
Make sure FPU is recognized for non-Intel CPUs.
The log for rev.1.7 should have said something like:
Added FPU_ERROR_BROKEN option. This forces a successful probe for
exception 16, so that hardware with a broken FPU error signal can sort
of work.
Use the normal interrupt handler (npx_intr()) instead of a special
probe-time interrupt handler, although this causes problems due to
the bus_teardown_intr() not actually even tearing down the interrupt
(these problems were avoided by doing interrupt attachment for the
special interrupt handler directly). Fixed minor bitrot in comments.
The reason for the npxprobe()/npxprobe1() split mostly went away at
about the same time it was made (in 1992 or 1993 just before the
beginning of history). 386BSD ran all probes with interrupts completely
masked, and I didn't want to disturb this when I added an irq probe
to npxprobe(). An irq (not necessarily npx) must be acked for at least
external npx's to take the cpu out of the wait state that it enters
when an npx error occurs, so the probe must be done with a suitable
irq unmasked. npxprobe() went to great lengths to unmask precisely
the npx irq.
Running probes with all interrupts masked was never really needed in
FreeBSD, since FreeBSD always masked interrupts well enough using
splhigh(), but it wasn't until rev.1.48 (1995/12/12) of autoconf.c
that all probes were run with CPU interrupts enabled. This permits
npxprobe() to probe its irq using normal interrupt resources. Note
that most drivers still can't depend on this. It depends on the
interrupt handler being fast and the irq not being shared.
lost when the buggy code goes away completely:
- don't assume that the npx irq number is >= 8. Rev.1.73 only reversed
part of the hard-coding of it to 13 in rev.1.66.
- backed out the part of rev.1.84 that added a highly confused comment
about an enable_intr() being "highly bogus". The whole reason for
existence of npxprobe() (separate from the main probe, npxprobe1())
is to handle the complications to make this enable_intr() safe.
- backed out the part of rev.1.94 that modified npxprobe(). It mainly
broke the enable_intr() to restore_intr(). Restoring the interrupt
state in a nested way is precisely what is not wanted here. It was
harmless in practice because npxprobe() is called with interrupts
enabled, so restoring the interrupt state enables interrupts. Most
of npxprobe() is a no-op for the same reason...
code in ipl.s and icu_ipl.s that used them was removed when the
interrupt thread system was committed. Debuggers also knew about
Xresume* because these labels hide the real names of the interrupt
handlers (Xintr*), and debuggers need to special-case interrupt
handlers to get the interrupt frame.
Both gdb and ddb will now use the Xintr* and Xfastintr* symbols to
detect interrupt frames. Fast interrupt frames were never identified
correctly before, so this fixes the problem of the running stack
frame getting lost in a ddb or gdb trace generated from a fast
interrupt - e.g. when debugging a simple infinite loop in the kernel
using a serial console, the frame containing the loop would never
appear in a gdb or ddb trace.
Reviewed by: jhb, bde
already does the initialization (though it didn't set pca_initialized, so
we always initialized twice) and since attach calls make_dev(), there's no
way that pcaopen() can be called before pcaattach().
The type of bus_space_tag_t is now a pointer to bus_space_tag structure,
and the bus_space_tag structure saves pointers to functions for direct
access and relocate access.
Added bsh_bam member to the bus_space_handle structure, it saves access
method either direct access or relocate access which is called by
bus_space_* functions.
Added the mecia device support. If the bs_da and bs_ra in bus tag are set
NEPC_io_space_tag and NEPC_mem_space_tag respectively, new bus_space stuff
changes the register of mecia automatically for 16bit access.
Obtained from: NetBSD/pc98
the current interrupt thread routines will guarantee the condition this is
checking for at a higher level but inthand_add() and inthand_remove() as
they currently exist don't satisfy this condition. (Which does need to be
fixed but which will take a bit more work.) This fixes shared interrupts.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
with system statistics monitoring tools (such as systat, vmstat...)
because of stopping RTC interrupts generation.
Restore all the timers (RTC and i8254) atomically.
Reviewed by: bde
MFC after: 1 week
flags with interrupts disabled to see if we should call ast() during
doreti. This was mostly submitted by Bruce, but his original patch did
the looping in ast() in assembly rather than in the ast() function itself.
Once we've actually called into the ast() function, it's cheaper to just
loop inside the function rather than returning from the function,
performing the check, and then calling the function again. However, we
can optimize the first check to avoid calling the function at all.
Other architectures may choose to implement this optimization if they
wish but it is not required for correct operation.
Submitted by: bde
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
we are required to do if we let user processes use the extra 128 bit
registers etc.
This is the base part of the diff I got from:
http://www.issei.org/issei/FreeBSD/sse.html
I believe this is by: Mr. SUZUKI Issei <issei@issei.org>
SMP support apparently by: Takekazu KATO <kato@chino.it.okayama-u.ac.jp>
Test code by: NAKAMURA Kazushi <kaz@kobe1995.net>, see
http://kobe1995.net/~kaz/FreeBSD/SSE.en.html
I have fixed a couple of style(9) deviations. I have some followup
commits to fix a couple of non-style things.
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
removed and a minimal number of changes to make it compile in the new
location.
# I have a fully converted on a disk that may be crashed. If it is
# crashed, I'll redo the work.
- Replace some very poorly thought out API hacks that should have been
fixed a long while ago.
- Provide some much more flexible search functions (resource_find_*())
- Use strings for storage instead of an outgrowth of the rather
inconvenient temporary ioconf table from config(). We already had a
fallback to using strings before malloc/vm was running anyway.
- move the sysctl code to kern_intr.c
- do not use INTRCNT_COUNT, but rather eintrcnt - intrcnt to determine
the length of the intrcnt array
- move the declarations of intrnames, eintrnames, intrcnt and eintrcnt
from machine-dependent include files to sys/interrupt.h
- remove the hw.nintr sysctl, it is not needed.
- fix various style bugs
Requested by: bde
Reviewed by: bde (some time ago)
simpler for npx exceptions that start as traps (no assembly required...)
and works better for npx exceptions that start as interrupts (there is
no longer a problem for nested interrupts).
Submitted by: original (pre-SMPng) version by luoqi
npxsave() went to great lengths to excecute fnsave with interrupts
enabled in case executing it froze the CPU. This case can't happen,
at least for Intel CPU/NPX's. Spurious IRQ13's don't imply spurious
freezes. Anyway, the complications were usually no-ops because IRQ13
is not used on i486's and newer CPUs, and because SMPng broke them in
rev.1.84. Forcible enabling of interrupts was changed to
write_eflags(old_eflags), but since SMPng usually calls npxsave() from
cpu_switch() with interrupts disabled, write_eflags() usually just
kept interrupts disabled.
npxinit() didn't have the usual race because it doesn't save to curpcb,
but it may have had a worse form of it since it uses the npx when it
doesn't "own" it. I'm not sure if locking prevented this. npxinit()
is normally caled with the proc lock but not sched_lock.
Use a critical region to protect pushing of curproc's npx state to
curpcb in npxexit(). Not doing so was harmless since it at worst
saved a wrong state to a dieing pcb.
handling, SMPng always switches the npx context away from curproc
before calling the handler, so the handler always paniced. When using
exception 16 exception handling, SMPng sometimes switches the npx
context away from curproc before calling the handler, so the handler
sometimes paniced. Also, we didn't lock the context while using it,
so we sometimes didn't detect the switch and then paniced in a less
controlled way.
Just lock the context while using it, and return without doing anything
except clearing the busy latch if the context is not for curproc. This
fixes the exception 16 case and makes the IRQ13 case harmless. In both
cases, the instruction that caused the exception is restarted and the
exception repeats. In the exception 16 case, we soon get an exception
that can be handled without doing anything special. In the IRQ13 case,
we get an easy to kill hung process.
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
of long and int64_t; and print the result as an unsigned long. This should
make the output from the bzero() test more readable, and avoid printing a
negative bandwidth. Note that this doesn't change the decision process,
since that is based on time elapsed, not on computed bandwidth.
and used in C or vice versa. The elf compiler uses the same names
for both. Remove asnames.h with great prejudice; it has served its
purpose.
Note that this does not affect the ability to generate an aout kernel
due to gcc's -mno-underscores option.
moral support from: peter, jhb
- Don't use an atomic operation to update cnt.v_soft in ast(). This is
the only place the variable is written to, and sched_lock is always
held when it is written, so it is already protected and the mutex release
of sched_lock asserts a memory barrier that ensures the value will be
updated in a timely fashion.
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
tsc_present in the right places (together with other variables of the
same linkage), and don't use messy ifdefs just to avoid exporting it in
some cases.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
- If possible, context switch to the thread directly in sched_ithd(),
rather than triggering a delayed ast reschedule.
- Disable interrupts while restoring fpu state in the trap handler,
in order to ensure that we are not preempted in the middle, which
could cause migration to another cpu.
Reviewed by: peter
Tested by: peter (alpha)
incompletely converting simplelocks to mutexes (COM_LOCK() is supposed
to hide the SMP locking internals, but it now depends on mutex interfaces
being visible).
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
initialization until after malloc() is safe to call, then iterate through
all mutexes and complete their initialization.
This change is necessary in order to avoid some circular bootstrapping
dependencies.
All calls to mtx_init() for mutexes that recurse must now include
the MTX_RECURSE bit in the flag argument variable. This change is in
preparation for an upcoming (further) mutex API cleanup.
The witness code will call panic() if a lock is found to recurse but
the MTX_RECURSE bit was not set during the lock's initialization.
The old MTX_RECURSE "state" bit (in mtx_lock) has been renamed to
MTX_RECURSED, which is more appropriate given its meaning.
The following locks have been made "recursive," thus far:
eventhandler, Giant, callout, sched_lock, possibly some others declared
in the architecture-specific code, all of the network card driver locks
in pci/, as well as some other locks in dev/ stuff that I've found to
be recursive.
Reviewed by: jhb
time I tinkered around here. Since INTREN is called from the interrupt
critical path now, it should not be too expensive. In this case, we
look at the bits being changed to decide which 8 bit IO port to write to
rather than unconditionally writing to both. I could probably have gone
further and only done the write if the bits actually changed, but that
seemed overkill for the usual case in interrupt threads.
[an outb is rather expensive when it has to cross the ISA bus]
as multi-processor kernels. The old way made it difficult for kernel
modules to be portable between uni-processor and multi-processor
kernels. It is no longer necessary to jump through hoops.
- always load %fs with the private segment on entry to the kernel
- change the type of the self referntial pointer from struct privatespace
to struct globaldata
- make the globaldata symbol have value 0 in all cases, so the symbols
in globals.s are always offsets, not aliases for fields in globaldata
- define the globaldata space used for uniprocessor kernels in C, rather
than assembler
- change the assmebly language accessors to use %fs, add a macro
PCPU_ADDR(member, reg), which loads the register reg with the address
of the per-cpu variable member
This version is functional and is aproaching solid..
notice I said APROACHING. There are many node types I cannot test
I have tested: echo hole ppp socket vjc iface tee bpf async tty
The rest compile and "Look" right. More changes to follow.
DEBUGGING is enabled in this code to help if people have problems.
format version number. (userland programs should not need to be
recompiled when the netgraph kernel internal ABI is changed.
Also fix modules that don;t handle the fact that a caller may not supply
a return message pointer. (benign at the moment because the calling code
checks, but that will change)
Add detach routine and turn driver into a module so it can be loaded
and unloaded. Also take a stab at implementing multicast packet
reception so that this NIC will work with IPv6. Promiscuous mode
doesn't seem to work, but I'm not sure why. It works well enough that
I can run dhclient on it and put it on the office network though.
Also ripped out spl stuff and replaced it with mutexes.
variables from i386 assembly language. The syntax is PCPU(member)
where member is the capitalized name of the per-cpu variable, without
the gd_ prefix. Example: movl %eax,PCPU(CURPROC). The capitalization
is due to using the offsets generated by genassym rather than the symbols
provided by linking with globals.o. asmacros.h is the wrong place for
this but it seemed as good a place as any for now. The old implementation
in asnames.h has not been removed because it is still used to de-mangle
the symbols used by the C variables for the UP case.
This clears out my outstanding netgraph changes.
There is a netgraph change of design in the offing and this is to some
extent a superset of soem of the new functionality and some of the old
functionality that may be removed.
This code works as before, but allows some new features that I want to
work with and evaluate. It is the basis for a version of netgraph
with integral locking for SMP use.
This is running on my test machine with no new problems :-)
mpapic.c. This gives us the benefit of C type checking. These functions
are not called in any critical paths and are not used by the interrupt
routines.