This transitions the VAP in and out of SLEEP state based on:
* whether there's been an active transmission in the last (hardcoded) 500ms;
* whether the TIM from the AP indicates there is data available.
It uses the beacon reception to trigger the active traffic check.
This way there's no further timer running to wake up the CPU
from its own sleep states.
Right now the VAP isn't woken up for multicast traffic - mostly because
the only NIC I plan on doing this for right will auto wakeup and stay
awake for multicast traffic indicated in the TIM. So I don't have
to manually keep the hardware awake.
This doesn't do anything if the NIC doesn't advertise it implements
the new SWSLEEP capability AND if the VAP doesn't have powersave
enabled.
It also doesn't do much with ath(4) as it doesn't currently implement
the SLEEP state.
Tested:
* AR5416, STA mode (with local ath(4) changes)
This turns ieee80211_node_pwrsave(), ieee80211_sta_pwrsave() and
ieee80211_recv_pspoll() into methods.
The intent is to let drivers override these and tie into the power save
management pathway.
For ath(4), this is the beginning of forcing a node software queue to
stop and start as needed, as well as supporting "leaking" single frames
from the software queue to the hardware.
Right now, ieee80211_recv_pspoll() will attempt to transmit a single frame
to the hardware (whether it be a data frame on the power-save queue or
a NULL data frame) but the driver may have hardware/software queued frames
queued up. This initial work is an attempt at providing the hooks required
to implement correct behaviour.
Allowing ieee80211_node_pwrsave() to be overridden allows the ath(4)
driver to pause and unpause the entire software queue for a given node.
It doesn't make sense to transmit anything whilst the node is asleep.
Please note that there are other corner cases to correctly handle -
specifically, setting the MORE data bit correctly on frames to a station,
as well as keeping the TIM updated. Those particular issues can be
addressed later.
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
o major overhaul of the way channels are handled: channels are now
fully enumerated and uniquely identify the operating characteristics;
these changes are visible to user applications which require changes
o make scanning support independent of the state machine to enable
background scanning and roaming
o move scanning support into loadable modules based on the operating
mode to enable different policies and reduce the memory footprint
on systems w/ constrained resources
o add background scanning in station mode (no support for adhoc/ibss
mode yet)
o significantly speedup sta mode scanning with a variety of techniques
o add roaming support when background scanning is supported; for now
we use a simple algorithm to trigger a roam: we threshold the rssi
and tx rate, if either drops too low we try to roam to a new ap
o add tx fragmentation support
o add first cut at 802.11n support: this code works with forthcoming
drivers but is incomplete; it's included now to establish a baseline
for other drivers to be developed and for user applications
o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates
prepending mbufs for traffic generated locally
o add support for Atheros protocol extensions; mainly the fast frames
encapsulation (note this can be used with any card that can tx+rx
large frames correctly)
o add sta support for ap's that beacon both WPA1+2 support
o change all data types from bsd-style to posix-style
o propagate noise floor data from drivers to net80211 and on to user apps
o correct various issues in the sta mode state machine related to handling
authentication and association failures
o enable the addition of sta mode power save support for drivers that need
net80211 support (not in this commit)
o remove old WI compatibility ioctls (wicontrol is officially dead)
o change the data structures returned for get sta info and get scan
results so future additions will not break user apps
o fixed tx rate is now maintained internally as an ieee rate and not an
index into the rate set; this needs to be extended to deal with
multi-mode operation
o add extended channel specifications to radiotap to enable 11n sniffing
Drivers:
o ath: add support for bg scanning, tx fragmentation, fast frames,
dynamic turbo (lightly tested), 11n (sniffing only and needs
new hal)
o awi: compile tested only
o ndis: lightly tested
o ipw: lightly tested
o iwi: add support for bg scanning (well tested but may have some
rough edges)
o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data
o wi: lightly tested
This work is based on contributions by Atheros, kmacy, sephe, thompsa,
mlaier, kevlo, and others. Much of the scanning work was supported by
Atheros. The 11n work was supported by Marvell.