that they will be installed before application constructors are invoked.
Its possible to link applications such that this fails, application code
is invoked before they are installed, but, well, Don't Do That.
Approved by: re (jhb)
- All those diffs to syscalls.master for each architecture *are*
necessary. This needed clarification; the stub code generation for
mlockall() was disabled, which would prevent applications from
linking to this API (suggested by mux)
- Giant has been quoshed. It is no longer held by the code, as
the required locking has been pushed down within vm_map.c.
- Callers must specify VM_MAP_WIRE_HOLESOK or VM_MAP_WIRE_NOHOLES
to express their intention explicitly.
- Inspected at the vmstat, top and vm pager sysctl stats level.
Paging-in activity is occurring correctly, using a test harness.
- The RES size for a process may appear to be greater than its SIZE.
This is believed to be due to mappings of the same shared library
page being wired twice. Further exploration is needed.
- Believed to back out of allocations and locks correctly
(tested with WITNESS, MUTEX_PROFILING, INVARIANTS and DIAGNOSTIC).
PR: kern/43426, standards/54223
Reviewed by: jake, alc
Approved by: jake (mentor)
MFC after: 2 weeks
package, a more recent, generalized set of routines. Among the
changes:
- Declare strtof() and strtold() in stdlib.h.
- Add glue to libc to support these routines for all kinds
of ``long double''.
- Update printf() to reflect the fact that dtoa works slightly
differently now.
As soon as I see that nothing has blown up, I will kill
src/lib/libc/stdlib/strtod.c. Soon printf() will be able
to use the new routines to output long doubles without loss
of precision, but numerous bugs in the existing code must
be addressed first.
Reviewed by: bde (briefly), mike (mentor), obrien
isnormal(). The current isinf() and isnan() are perserved for
binary compatibility with 5.0, but new programs will use the macros.
o Implement C99 comparison macros isgreater(), isgreaterequal(),
isless(), islessequal(), islessgreater(), isunordered().
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)
instead of unwinding the call stack. This makes them usable to switch
stacks, e.g. for libc_r.
Do not save the frame pointer in setjmp() and _setjmp(), it is not needed
any more.
Rename _longjmp() to ___longjmp(), with a weak alias to _longjmp(), like
the other architectures did.
HUGE_VAL is not properly aligned on some architectures. The previous
fix now works because the two versions of 'math.h' (include/math.h
and lib/msun/src/math.h) have since been merged into one.
PR: bin/43544
When it is called directly, gcc is smart enough to generate inline
code for it, which is why it wasn't noticed before that it was missing.
fabs() would probably better fit into libm, but it has traditionally been
in libc on FreeBSD, so there is probably software around that makes
assumptions about this by now.
instead of on startup. This fixes binary compatibility of dynamically
linked binaries from before the signal code move.
Suggested by: wollman (a long time ago)
a floating point instruction into a 6-bit register number for
double and quad arguments.
Make use of the new INSFPdq_RN macro where apporpriate; this
is required for correctly handling the "high" fp registers
(>= %f32).
Fix a number of bugs related to the handling of the high registers
which were caused by using __fpu_[gs]etreg() where __fpu_[gs]etreg64()
should be used (the former can only access the low, single-precision,
registers).
Submitted by: tmm
on long double, which are not implemented in hardware on any UltraSPARC
chip that I know of. This just calls into the existing floating point
emulator, which is still needed to emulate other floating point operations
in certain conditions. Without this gcc has to generate the quad floating
point instructions directly, which sometimes causes internal compiler
errors.
Reviewed by: tmm
using these to load long doubles, but they aren't implemented in hardware
on (at least) UltraSPARC I and II machines.
Emulate popc in the user trap handler as well.
Re-arrange slightly to make support functions more accessible.
Reviewed by: tmm
and add some compatibility defines. Add fields for ins and locals to
struct reg also for the same reason; these aren't filled in yet because
getting at those registers sucks and I'd rather not save them in the
trapframe just for this. Reorder struct reg to be ABI compatible as
well. Add needed include of machine/emul.h.
This gets pmdb (poor man's debugger) from OpenBSD mostly compiling but it
doesn't work yet :(
support for fcmp and fcmpe instructions with a condition code
specification other than %fcc0.
This (primarily the first part) seems to fix a lot of problems that
people were seeing, e.g. perl and gawk failures.
Reported and analyzed by: wollman
gcc emits the deprecated sparc v8 instructions that use this register
when optimizing for UltraSparc machines because they are apparetly
faster then their v9 counterpars there.