We allow to modify only few fields in mode pages now, but still it is
not good if they unexpectedly change during failover. Also this fixes
reporting of "Mode parameters changed" UAs on secondary node.
HA protocol requires strict version, parameters and configuration match.
Differences there may cause full set of problems up to kernel panic.
To avoid that, validate peer parameters on connect, and abort connection
immediately if some mismatch detected.
REPORT LUNS command is more related to target rather then specific LUN.
This node may be primary for LUNs for some reason unknown to another,
and command forwarded to another node won't be able to report them.
REQUEST SENSE is related to LUN, but in our implementation it reports
only UAs and CAs, that are stored locally rather then on primary node.
Previously, with serseq enabled, next command was unblocked only after
previous completed. With this change, for read operations, next command
is unblocked as soon as last media read completed. This is important
for frontends that actually wait for data move completion (like camtgt),
or when data are moved through the HA link, or especially when both.
All requests arriving for processing after OFFLINE flag set are rejected
with BUSY status. Races around OFFLINE flag setting are closed by calling
taskqueue_drain_all().
CTL HA functionality was originally implemented by Copan many years ago,
but large part of the sources was never published. This change includes
clean room implementation of the missing code and fixes for many bugs.
This code supports dual-node HA with ALUA in four modes:
- Active/Unavailable without interlink between nodes;
- Active/Standby with second node handling only basic LUN discovery and
reservation, synchronizing with the first node through the interlink;
- Active/Active with both nodes processing commands and accessing the
backing storage, synchronizing with the first node through the interlink;
- Active/Active with second node working as proxy, transfering all
commands to the first node for execution through the interlink.
Unlike original Copan's implementation, depending on specific hardware,
this code uses simple custom TCP-based protocol for interlink. It has
no authentication, so it should never be enabled on public interfaces.
The code may still need some polishing, but generally it is functional.
Relnotes: yes
Sponsored by: iXsystems, Inc.
This is preparation for possibility to open/close media several times
per LUN life cycle. While there, rename variables to reduce confusion.
As additional bonus this allows to open read-only media, such as ZFS
snapshots.
It has nothing to share with too huge ctl.c other then device descriptor,
but even that may be counted as design error that may be fixed later.
At some point we may even want to have several ioctl ports.
Its idea was to be a simple initiator and execute several commands from
kernel level, but FreeBSD never had consumer for that functionality,
while its implementation polluted many unrelated places..
Reporting SCSI errors to console is often useless, pollutes logs and may
affect performance. For debugging there is kern.cam.ctl.debug sysctl
MFC after: 1 week
At this point IMMED flag is translated to MNT_NOWAIT flag of VOP_FSYNC(),
hoping that file system implements that (ZFS seems doesn't).
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Before this change SYNCHRONIZE CACHE commands were executed exclusively,
as if they had ORDERED tag. But looking through SCSI specs I've found
no any reason to be so strict. For reads this ordering seems pointless.
For writes it looks less obvious, so I left ordering against preceeding
write commands, while following ones are no longer required to wait.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
During vMotion and Clone VMware by default runs multiple sequential 4MB
XCOPY requests same time. If CTL issues reads sequentially in 1MB chunks
for each XCOPY command, reads from different commands are not detected
as sequential by serseq option code and allowed to execute simultaneously.
Such read pattern confused ZFS prefetcher, causing suboptimal disk access.
Issuing all reads same time make serseq code work properly, serializing
reads both within each XCOPY command and between them.
My tests with ZFS pool of 14 disks in RAID10 shows prefetcher efficiency
improved from 37% to 99.7%, copying speed improved by 10-60%, average
read latency reduced twice on HDD layer and by five times on zvol layer.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Previously several places were doing it on its own, partially
incorrectly (e.g. without the filedesc locked) or even actively harmful
by populating jdir or assigning rootvnode without vrefing it.
Reviewed by: kib
To avoid conflicts between target and initiator devices in CAM, make
CTL use target ID reported by HBA as its initiator_id in XPT_PATH_INQ.
That target ID is known to never be used for initiator role, so it won't
conflict. For Fibre Channel and FireWire HBAs this specific ID choice
is irrelevant since all target IDs there are virtual. Same time for SPI
HBAs it seems could be even requirement to use same target ID for both
initiator and target roles.
While there are some more things to polish in isp(4) driver, first tests
of using both roles same time on the same port appeared successfull:
# camcontrol devlist -v
scbus0 on isp0 bus 0:
<FREEBSD CTLDISK 0001> at scbus0 target 1 lun 0 (da20,pass21)
<> at scbus0 target 256 lun 0 (ctl0)
<> at scbus0 target -1 lun ffffffff (ctl1)
- remove last remnants of never implemented multiple targets support;
- implement missing support for LUN mapping in this area.
Due to existing locking constraints LUN mapping code is practically
unlocked at this point. Hopefully it is not racy enough to live until
somebody get idea how to call sleeping fronend methods under lock also
taken by the same frontend in non-sleepable context. :(
At this point CTL has no known use case for device queue freezes.
Same time existing (considered to be broken) code was found to cause
modify-after-free issues.
Discussed with: ken
MFC after: 1 week
This change by 2-3 times improves performance of misaligned XCOPY and WUT
commands by avoiding unneeded read-modify-write cycles inside ZFS.
MFC after: 1 week
This change by 2-3 times improves performance of misaligned WRITE SAME
commands by avoiding unneeded read-modify-write cycles inside ZFS.
MFC after: 1 week
target iSCSI offload. Add mechanism to query maximum receive data segment
size supported by chosen hardware offload module, and use it in ctld(8)
to determine the value to advertise to the other side.
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
While ctld(8) still does not allow multiple portal groups per target
to be configured, kernel should now be able to handle it.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Replace iSCSI-specific LUN mapping mechanism with new one, working for any
ports. By default all ports are created without LUN mapping, exposing all
CTL LUNs as before. But, if needed, LUN mapping can be manually set on
per-port basis via ctladm. For its iSCSI ports ctld does it via ioctl(2).
The next step will be to teach ctld to work with FibreChannel ports also.
Respecting additional flexibility of the new mechanism, ctl.conf now allows
alternative syntax for LUN definition. LUNs can now be defined in global
context, and then referenced from targets by unique name, as needed. It
allows same LUN to be exposed several times via multiple targets.
While there, increase limit for LUNs per target in ctld from 256 to 1024.
Some initiators do not support LUNs above 255, but that is not our problem.
Discussed with: trasz
MFC after: 2 weeks
Relnotes: yes
Sponsored by: iXsystems, Inc.
sys/cam/scsi/scsi_all.h:
In struct scsi_extended_inquiry_data:
- Increase the length field to 2 bytes, as it is 2 bytes in SPC-4.
- Add bit definitions for the various Activiate Microcode actions.
- Add the Sequential Access Logical Block Protection support bit,
since we need that in the sa(4) driver. (For modifications
that will come later.)
- Add definitions for the various Multi I_T Nexus Microcode
Download modes.
sys/cam/ctl/ctl.c:
As of SPC-4, a single report of "REPORTED LUNS DATA HAS CHANGED"
is to be given per I_T nexus. Once it is reported, the unit
attention condition should be cleared for all LUNS attached to
an I_T nexus.
Previously that only happened when a REPORT LUNS command was
processed.
This behavior may be different (according to SAM-5) when the
UA_INTLCK_CTRL bits are non-zero in the control mode page but
CTL does not currently support that.
So, in view of the spec, whenever we report a LUN inventory
change unit attention, clear it on all LUNs for that
particular I_T nexus.
Add a new function, ctl_clear_ua() that will clear a unit
attention on all LUNs for the given I_T nexus.
One field in the extended inquiry data that we could potentially
report at some point is the maximum supported sense data length.
To do that, we would the SIM to report (via path inquiry
perhaps) how much sense data it is able to send.
Add comments to explain some of the bits that are set in the
Extended Inquiry VPD page.
Add a few comments to make it more clear which functions handle
various VPD pages.
Sponsored by: Spectra Logic
MFC after: 1 week
This could cause data corruption due to accessing wrong LUN in case of
retries on write errors. Failed writes were retried to read LUN.
MFC after: 3 days
If we aggregated status sending with data move and got error, allow status
to be updated and resent again separately. Without this command may stuck
without status sent at all.
MFC after: 2 weeks
While in most cases CTL should correctly fetch those values from backing
storages, there are some initiators (like MS SQL), that may not like large
physical block sizes, even if they are true. For such cases allow override
fetched values with supported ones (like 4K).
MFC after: 1 week
While we don't support MCS, hole in received sequence numbers may mean
only PDU loss. While we don't support lost PDU recovery, terminate the
connection to avoid stuck commands.
While there, improve handling of sequence numbers wrap after 2^32 PDUs.
MFC after: 2 weeks
Technically read requests can be executed in any order or simultaneously
since they are not changing any data. But ZFS prefetcher goes crasy when
it receives consecutive requests from different threads. Since prefetcher
works on level of separate blocks, instead of two consecutive 128K requests
it may receive 32 8K requests in mixed order.
This patch is more workaround then a real fix, and it does not fix all of
prefetcher problems, but it improves sequential read speed by 3-4x times
in some configurations. On the other side it may hurt performance if
some backing store has no prefetch, that is why it is disabled by default
for raw devices.
MFC after: 2 weeks
While without UNMAP support there is not much initiator can do about it,
the administrator still better be notified about the storage overflow.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Previously it was supported only for ZVOL-backed LUNs, but now should work
for file-backed LUNs too. Used value in this case is a space occupied by
the backing file, while available value is an available space on file
system. Pool thresholds are still not implemented in this case.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
It is implemented for LUNs backed by ZVOLs in "dev" mode and files.
GEOM has no such API, so for LUNs backed by raw devices all LBAs will
be reported as mapped/unknown.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
After recent optimizations this change is no longer blocked by CTL memory
consumption. Those limits are still not free, but much cheaper now.
MFC after: 1 week
Relnotes: yes
Sponsored by: iXsystems, Inc.
Abusing ability of major UAs cover minor ones we may not account UAs for
inactive ports. Allocate UAs storage for port and start accounting only
after some initiator from that port fetched its first POWER ON OCCURRED.
This reduces per-LUN CTL memory usage from >1MB to less then 100K.
MFC after: 1 month
In configurations with many ports, like iSCSI, each LUN is typically
accessed only by limited subset of ports. Allocating that memory on
demand allows to reduce CTL memory usage from 5.3MB/LUN to 1.3MB/LUN.
MFC after: 1 month
Make CTL core and block backend set success status before initiating last
data move for read commands. Make CAM target and iSCSI frontends detect
such condition and send command status together with data. New I/O flag
allows to skip duplicate status sending on later fe_done() call.
For Fibre Channel this change saves one of three interrupts per read command,
increasing performance from 126K to 160K IOPS. For iSCSI this change saves
one of three PDUs per read command, increasing performance from 1M to 1.2M
IOPS.
MFC after: 1 month
Sponsored by: iXsystems, Inc.
Old allocator created significant lock congestion protecting its lists
of preallocated I/Os, while UMA provides much better SMP scalability.
The downside of UMA is lack of reliable preallocation, that could guarantee
successful allocation in non-sleepable environments. But careful code
review shown, that only CAM target frontend really has that requirement.
Fix that making that frontend preallocate and statically bind CTL I/O for
every ATIO/INOT it preallocates any way. That allows to avoid allocations
in hot I/O path. Other frontends either may sleep in allocation context
or can properly handle allocation errors.
On 40-core server with 6 ZVOL-backed LUNs and 7 iSCSI client connections
this change increases peak performance from ~700K to >1M IOPS! Yay! :)
MFC after: 1 month
Sponsored by: iXsystems, Inc.
In this mode one head is in Active state, supporting all commands, while
another is in Standby state, supporting only minimal LUN discovery subset.
It is still incomplete since Standby state requires reservation support,
which is impossible to do right without having interlink between heads.
But it allows to run some basic experiments.
With command serialization used in CTL, there are no other commands to abort
when PREEMPT AND ABORT gets to run, so it is practically equal to PREEMPT.
MFC after: 1 week
For ZVOL-backed LUNs this allows to inform initiators if storage's used or
available spaces get above/below the configured thresholds.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
This makes VMWare VAAI Thin Provisioning Stun primitive activate, pausing
the virtual machine, when backing storage (ZFS pool) is getting overflowed.
MFC after: 1 week
Sponsored by: iXsystems, Inc.
This includes support for:
- Read-Write Error Recovery mode page;
- Informational Exceptions Control mode page;
- Logical Block Provisioning mode page;
- LOG SENSE command.
No real Informational Exceptions features yet. This is only a placeholder.
Sponsored by: iXsystems, Inc.
SPC-4 r2 allows to return empty defect list if the list is not supported.
We don't reallu support defect data lists, but this suppresses some errors.
MFC after: 1 week
Make this subcommand less FC-specific, reporting target and port addresses
in more generic way. Also make it report list of connected initiators in
unified way, working for both FC and iSCSI, and potentially others.
MFC after: 1 week
Queued async events handling in CAM opened race, that may lead to duplicate
AC_PATH_REGISTERED events delivery during boot. That was not happening
before r272935 because the driver was initialized later. After that change
it started create duplicate ports in CTL.
Target mode operation does not depend on the initiator mode scan process.
This change allows the target driver to attach earlier and receive some
async events (like AC_CONTRACT) that could be lost otherwise.
MFC after: 1 week
Such LUNs will be visible to initiators, but return "not ready" status
on media access commands. If backing storage become available later,
`ctladm modify ...` or `service ctld reload` can trigger its reopen.
It allows to push out some final data from the send queue to the socket
before its close. In particular, it increases chances for logout response
to be delivered to the initiator.
Before this change target could send R2T request for write transfer of any
size, that could violate iSCSI RFC, which allows initiator to limit maximum
R2T size by negotiating MaxBurstLength connection parameter.
Also report an error in case of write underflow, when initiator provides
less data than initiator expects. Previously in such case our target
sent R2T request for non-existing data, violating the RFC, and confusing
some initiators. SCSI specs don't explicitly define how write underflows
should be handled and there are different oppinions, but reporting error
is hopefully better then violating iSCSI RFC with unpredictable results.
MFC after: 2 weeks
or I_T NEXUS LOSS, clear all minor UAs for the LUN, redundant in this case.
All SAM specifications tell that target MAY do it, but libiscsi initiator
seems require it to be done, terminating connection with error if some more
UAs happen to be reported during iSCSI connection.
MFC after: 3 days
Using pointer from the cdev directly is dangerous since we have no reference
on it, and it may change any time. That caused panic if device has gone.
While there, report capacity change only if it really changed.
MFC after: 3 days