Remove DBL_DIG, DBL_MIN, DBL_MAX and their FLT_ counterparts, they
were marked for deprecation ever since SUSv1 at least.
Only define ULLONG_MIN/MAX and LLONG_MAX if long long type is
supported.
Restore a lost comment in MI _limits.h file and remove it from
sys/limits.h where it does not belong.
that were added to sparc64 and later powerpc, really should have been in
the MI area. But changing that now with insufficient preperation will
just cause too much pain.
Move MD_FETCH() to the MI sys/linker.h file to avoid another two copies
of it.
to get actual constant values. This is in preparation for machine/limits.h
retirement.
Discussed on: standards@
Submitted by: Craig Rodrigues <rodrigc@attbi.com> (*)
Modified by: kan
the cpu dependent files. It will need to be done differently for USIII.
- Simplify the logic for detecting context rollovers. Instead of dealing
with it when the next context switch would cause the context numbers to
rollover, deal with it when they actually do rollover.
- Move some things around in cpu_switch so that we only do 1 membar #Sync
when switching address space, instead of 2.
- Detect kernel threads by comparing the new vm space to vmspace0, instead
if checking if the tlb context is 0.
- Removed some debug code.
enum to an int and redefine the BUS_DMASYNC_* constants as
flags. This allows us to specify several operations in one
call to bus_dmamap_sync() as in NetBSD.
These are called through function pointers so that different implementations
can be provided for cheetah, where the block load instructions may or may
not be a win, and so they can be disabled with the machdep.use_vis tunable.
In terms of raw bandwidth the integer versions are faster, but not allocating
lines in the L2 cache for useless data gives a measurable improvement in user
time for the benchmarks I tested (mostly buildworld with -j8).
As far as I can tell the instructions used are implemented on everything
back to UltraSPARC I, so there should not be a problem with different cpu
types.
can do 64 bytes at a time and don't allocate lines in the L2 cache. These
assume that everything is 64 byte aligned, and that there's more than 128
bytes of data (best for whole pages). The block load and store instructions
don't follow normal memory ordering rules and require either a memory barrier
or move between registers before the data can actually be used. This
implementation correctly shuffles around 3 out of the 4 sets of registers
in order to avoid memory barriers expect for the last 2 blocks.
used to support block copy and zero operations in the kernel which use the
floating point registers.
- While I'm changing the size, improve the layout of struct pcb, sort by size,
then alphabetical etc.
- Add some assertions to validate assumptions made about how the pcb is
allocated.
pages which represent actual physical memory we must strip off the fake
page in order to allow illegal aliases to be detected. Otherwise we map
uncacheable in the virtual and physical caches and set the side effect bit,
as is required for mapping device memory.
This fixes gstat on sparc64, which wants to mmap kernel memory through a
character device.
where physical addresses larger than virtual addresses, such as i386s
with PAE.
- Use this to represent physical addresses in the MI vm system and in the
i386 pmap code. This also changes the paddr parameter to d_mmap_t.
- Fix printf formats to handle physical addresses >4G in the i386 memory
detection code, and due to kvtop returning vm_paddr_t instead of u_long.
Note that this is a name change only; vm_paddr_t is still the same as
vm_offset_t on all currently supported platforms.
Sponsored by: DARPA, Network Associates Laboratories
Discussed with: re, phk (cdevsw change)
on future UltraSPARC cpus for which the data cache is not direct mapped.
- Move UltraSPARC I and II (spitfire, blackbird, sapphire, sabre) specific
functions to spitfire.c, and add cheetah.c for UltraSPARC III specific
functions. Initially just cache flushing, but there are a few other
functions that will need to move here.
- Add an ipi handler for data cache flushing on UltraSPARC III.
- Use function pointers to select the right cache flushing functions based
on cpu_impl.
With this it is possible to boot single user from an mfs root on UltraSPARC
III systems, including spinning up secondary processors. There is currently
no support for the host to pci bridge, and no documentation for it is
publically available.
Thanks to Oleg Derevenetz for providing access to a system with UltraSPARC
III+ cpus.
are machine dependent because they are not required to update the tlb when
mappings are added or removed, and doing so is machine dependent.
In addition, an implementation may require that pages mapped with pmap_kenter
have a backing vm_page_t, which is not necessarily true of all physical
pages, and so may choose to pass the vm_page_t to pmap_kenter instead of the
physical address in order to make this requirement clear.
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)
counterparts to bus_dmamem_alloc() and bus_dmamem_free(). This allows
the caller to specify the size of the allocation instead of it defaulting
to the max_size field of the busdma tag.
This is intended to aid in converting drivers to busdma. Lots of
hardware cannot understand scatter/gather lists, which forces the
driver to copy the i/o buffers to a single contiguous region
before sending it to the hardware. Without these new methods, this
would require a new busdma tag for each operation, or a complex
internal allocator/cache for each driver.
Allocations greater than PAGE_SIZE are rounded up to the next
PAGE_SIZE by contigmalloc(), so this is not suitable for multiple
static allocations that would be better served by a single
fixed-length subdivided allocation.
Reviewed by: jake (sparc64)
1.) Fix an off-by-one in the DVMA space handling, which would make it
possible to allocate one page beyond the end of the DVMA area.
This page was aliased to the first page. Apparently, this bug was
responsible for the trashed nvram/eeprom some people were reporting,
in conjunction with a number of unfortunate coincidences.
2.) Fix broken boundary and and lowaddr calculations.
3.) Fix a memory leak on an error path.
4.) Update a outdated comment to reflect the introduction of IOMMU_MAX_PRE,
make the usage of IOMMU_MAX_PRE more consistent and KASSERT that the
preallocation size is not 0.
5.) Fix a case where an error return was lost.
6.) When signalling an error to the caller by invoking the callback, do
not use a segment pointer of NULL for compatability with existing
drivers.
Also, increase the maximum segment number to 64; it is rather arbitrary,
with the exception of the of the stack space consumed by the segment
array.
Special thanks go to Harti Brandt <brandt@fokus.fraunhofer.de> for
spotting 4 and 5, and testing many iterations of patches.
Pointy hats to: tmm
map. Use this new feature to implement iommu_dvmamap_load_mbuf() and
iommu_dvmamap_load_uio() functions in terms of a new helper function,
iommu_dvmamap_load_buffer(). Reimplement the iommu_dvmamap_load()
to use it, too.
This requires some changes to the map format; in addition to that,
remove unused or redundant members.
Add SBus and Psycho wrappers for the new functions, and make them
available through the respective DMA tags.
_nexus_dmamap_load_buffer()
- implement nexus_dmamap_load() in terms of _nexus_dmamap_load_buffer().
Note that this is untested, as this code is not currently used (but
might be later for UPA devices).
- move BUS_DMAMAP_NSEGS to bus_private.h
- disable the ecache flushing in nexus_dmamap_sync(); it should not be
needed, although the docs are not entirely clear on that.
- move some constants into iommureg.h
- correct some comments
- use KASSERT() in one place instead of rolling our own
- take a sanity check out of #ifdef DIAGNOSTIC
- fix a syntax error in normally #ifdef'ed out debug code
be used for zones that allocate objects of less 1 page. The biggest advantage
of this is that all of a sudden the majority of kernel malloc-ed data doesn't
need kva allocated for it. Besides microbenchmarks I haven't seen a measurable
performance improvement from doing this.
useful for accessing more than 1 page of contiguous physical memory, and
to use 4mb tlb entries instead of 8k. This requires that the system only
use the direct mapped addresses when they have the same virtual colour as
all other mappings of the same page, instead of being able to choose the
colour and cachability of the mapping.
- Adapt the physical page copying and zeroing functions to account for not
being able to choose the colour or cachability of the direct mapped
address. This adds a lot more cases to handle. Basically when a page has
a different colour than its direct mapped address we have a choice between
bypassing the data cache and using physical addresses directly, which
requires a cache flush, or mapping it at the right colour, which requires
a tlb flush. For now we choose to map the page and do the tlb flush.
This will allows the direct mapped addresses to be used for more things
that don't require normal pmap handling, including mapping the vm_page
structures, the message buffer, temporary mappings for crash dumps, and will
provide greater benefit for implementing uma_small_alloc, due to the much
greater tlb coverage.
a mapping belongs to by setting it in the vm_page_t structure that backs
the tsb page that the tte for a mapping is in. This allows the pmap that
a mapping belongs to to be found without keeping a pointer to it in the
tte itself.
- Remove the pmap pointer from struct tte and use the space to make the
tte pv lists doubly linked (TAILQs), like on other architectures. This
makes entering or removing a mapping O(1) instead of O(n) where n is the
number of pmaps a page is mapped by (including kernel_pmap).
- Use atomic ops for setting and clearing bits in the ttes, now that they
return the old value and can be easily used for this purpose.
- Use __builtin_memset for zeroing ttes instead of bzero, so that gcc will
inline it (4 inline stores using %g0 instead of a function call).
- Initially set the virtual colour for all the vm_page_ts to be equal to their
physical colour. This will be more useful once uma_small_alloc is
implemented, but basically pages with virtual colour equal to phsyical
colour are easier to handle at the pmap level because they can be safely
accessed through cachable direct virtual to physical mappings with that
colour, without fear of causing illegal dcache aliases.
In total these changes give a minor performance improvement, about 1%
reduction in system time during buildworld.