itself; this causes undefined behaviour on UltraSPARCs. In particular,
the interrupt packet data words will not necessarily be delivered
correctly, which would result in a crash.
This bug also caused the cache-flushing work to be done twice on the
triggering CPU (when it did not cause crashes).
Reviewed by: jake
wait for those cpus, instead of all of them by using a count. Oops.
Make the pointer to the mask that the primary cpu spins on volatile, so
gcc doesn't optimize out an important load. Oops again.
Activate tlb shootdown ipi synchronization now that it works. We have
all involved cpus wait until all the others are done. This may not be
necessary, it is mostly for sanity.
Make the trigger level interrupt ipi handler work.
Submitted by: tmm
than the other implementations; we have complete control over the tlb, so we
only demap specific pages. We take advantage of the ranged tlb flush api
to send one ipi for a range of pages, and due to the pm_active optimization
we rarely send ipis for demaps from user pmaps.
Remove now unused routines to load the tlb; this is only done once outside
of the tlb fault handlers.
Minor cleanups to the smp startup code.
This boots multi user with both cpus active on a dual ultra 60 and on a
dual ultra 2.
on the loader to do it. Improve smp startup code to be less racy and to
defer certain things until the right time. This almost boots single user
on my dual ultra 60, it is still very fragile:
SMP: AP CPU #1 Launched!
Enter full pathname of shell or RETURN for /bin/sh:
# ls
Debugger("trapsig")
Stopped at Debugger+0x1c: ta %xcc, 1
db> heh
No such command
db>
cpu(s) into the kernel, and sync-ing them up to "kernel" mode so we can
send them ipis, which also work.
Thanks to John Baldwin for providing me with access to the hardware
that made this possible.
Parts obtained from: bsd/os
to a new architecture. This is the base of the sparc64 port, but contains
limited machine dependent code, and can be used a base for ports. Included
are:
- standard machine dependent headers, tweaked for a 64 bit, big endian
architecture, including empty versions of all the machine dependent
structures
- a machine independent atomic.h, which can be used until a port has
support for interrupts and the operations really need to be atomic
- stub versions of all the machine dependent functions, which panic
when called and print out the name of the function that needs to
be implemented. functions which are normally in assembly files are
not included, but this should reduce the number of different undefined
references on the first few compiles from hundreds to 5 or 6
Given minimal startup code and console support it should be trivial to
make this compile and run the first few sysinits on almost any architecture.
Requested by: alfred, imp, jhb