holding CPU along with the lock. When a CPU fails to get the lock
it compares its own id to the holder id. If they are the same it
panic()s, as simple locks are binary, and this would cause a deadlock.
Controlled by smptests.h: SL_DEBUG, ON by default.
Some minor cleanup.
and hardware.
There is now another simple_lock around clock data/hardware accesses in
clock.c and microtime.s. It is my belief that this is the only area
sio/cy might stumble into during an unblocked INTerrupt. Thus I separated
the sio/cy code from the generic disable_intr()/enable_intr() routines.
Controlled by smptests.h: USE_COMLOCK, ON by default.
Add a simplelock to deal with disable_intr()/enable_intr() as used in UP kernel.
UP kernel expects that this is enough to guarantee exclusive access to
regions of code bracketed by these 2 functions.
Add a simplelock to bracket clock accesses in clock.c: clock_lock.
Help from: Bruce Evans <bde@zeta.org.au>
and the sound driver which uses auto dma.
The dma interface functionality remains however it now checks
to see if a dma is operating in auto dma mode and if so it bypasses
the busy flag check . I have modified the sound driver 3.5 to
adjust for this new behavior and tested it under FreeBSD 3.0 -current
This patch also includes the new function isa_dmastop.
Submitted by: Amancio Hasty <hasty@rah.star-gate.com>
smp_active = 1 used to indicate that the system had frozen previously
started AP's, while smp_active = 0 was "AP's not yet started". I have split
this into smp_started (which is set when the AP's come online), and
smp_active is left for turning on/off AP scheduling.
- We now have enough per-cpu idle context, the real idle loop has been
revived (cpu's halt now with nothing to do).
- Some preliminary support for running some operations outside the
global lock (eg: zeroing "free but not yet zeroed pages") is present
but appears to cause problems. Off by default.
- the smp_active sysctl now behaves differently. It's merely a 'true/false'
option. Setting smp_active to zero causes the AP's to halt in the idle
loop and stop scheduling processes.
- bootstrap is a lot safer. Instead of sharing a statically compiled in
stack a number of times (which has caused lots of problems) and then
abandoning it, we use the idle context to boot the AP's directly. This
should help >2 cpu support since the bootlock stuff was in doubt.
- print physical apic id in traps.. helps identify private pages getting
out of sync. (You don't want to know how much hair I tore out with this!)
More cleanup to follow, this is more of a checkpoint than a
'finished' thing.
irqs can't work (at best, the first one attached wins). It used to
be necessary to skip this check because of bogus irqs in the sound
drivers, but the sound drivers have been fixed, except possibly the
OSS ones.
arg of type u_short (just write the function in ANSI C like most
other functions in this file instead of fixing the interface or
depending on a gcc feature).
vm_inherit_t. These types are smaller than ints, so the prototypes
should have used the promoted type (int) to match the old-style function
definitions. They use just vm_prot_t and/or vm_inherit_t. This depends
on gcc features to work. I fixed the definitions since this is easiest.
The correct fix may be to change the small types to u_int, to optimize
for time instead of space.
wasted.
Fixed type mismatches for functions with vm_prot_t's as args. vm_prot_t
is u_char, so the prototypes should have used promoteof(u_char) to match
the old-style function definitions. They use just vm_prot_t. This depends
on gcc features to work. I fixed the definitions since this is easiest.
The correct fix may be to change vm_prot_t to u_int, to optimize for time
instead of space.
Removed a stale comment.
Added a new variable, 'bsp_apic_ready', which is set as soon as the bootstrap
CPU has initialized its local APIC. Conditionalize the GENSPLR functions
to call ss_lock ONLY after bsp_apic_ready is TRUE; This should prevent
any problems with races between the time the 1st AP becomes ready and the
time smp_active is set.
region protected by the simplelock 'cpl_lock'.
Notes:
- this code is currently controlled on a section by section basis with
defines in machine/param.h. All sections are currently enabled.
- this code is not as clean as I would like, but that can wait till later.
- the "giant lock" still surrounds most instances of this "cpl region".
I still have to do the code that arbitrates setting cpl between the
top and bottom halves of the kernel.
- the possibility of deadlock exists, I am committing the code at this
point so as to exercise it and detect any such cases B4 the "giant lock"
is removed.
pause before attempting to reset the sequencer address. Remove the
loop checking to see if the address has gone to zero since it is
unnecessary
Adjust the abort SCB timeouts back up to 2 seconds where they should
be.
Fix an oversight in the removal of the bus reset settle code where
we might not run the queue of completed commands.
Remove an unecessary call to ahc_run_done_queue in ahc_reset_current_bus.
Submitted by: Tor Egge <Tor.Egge@idi.ntnu.no>
Made NEW_STRATEGY default.
Removed misc. old cruft.
Centralized simple locks into mp_machdep.c
Centralized simple lock macros into param.h
More cleanup in the direction of making splxx()/cpl MP-safe.
I have no way of testing this one, first SMP/cy user please let me know...
It is my belief that sio and cy are the only FAST_INTR() ISRs. If this
is a bad assumption please educate me.
Several new fine-grained locks.
New FAST_INTR() methods:
- separate simplelock for FAST_INTR, no more giant lock.
- FAST_INTR()s no longer checks ipending on way out of ISR.
sio made MP-safe (I hope).
Could somebody please update other drivers so that SCSI_RSVD (0x18)
to be handled just like SCSI_BUSY(0x08)?
There's no need for extra state, so we use XS_BUSY for SCSI_RSVD too.
PR: 4257
socket addresses in mbufs. (Socket buffers are the one exception.) A number
of kernel APIs needed to get fixed in order to make this happen. Also,
fix three protocol families which kept PCBs in mbufs to not malloc them
instead. Delete some old compatibility cruft while we're at it, and add
some new routines in the in_cksum family.
We now tsleep() in kthread_init() between start_init()
and prepare_usermode() while waiting for ALL the idle_loop()
processes to come online.
Debugged & tested by: "Thomas D. Dean" <tomdean@ix.netcom.com>
Reviewed by: David Greenman <dg@root.com>
entry to the QOUTFIFO when it is full. This should eliminate the
"Timed out while idle" problems that many have reported.
In truth, this is somewhat of a hack. Although are interrupt latency is
low enough that we should be able to always service the queue in time,
since each entry must be passed up to the higher SCSI layer for what can
be a large amount of processing (perhaps even resulting in a new command
being queued) with interrupts disabled, we need this mechanism to avoid
overflow. In the future, these additional tasks will be offloaded to a
software interrupt handler which should make this hack unnecessary.
as chargeable CPU usage. This should mitigate the problem of processes
doing disk I/O hogging the CPU. Various users have reported the
problem, and test code shows that the problem should now be gone.
Work done by BSDI, Jonathan Lemon <jlemon@americantv.com>,
Mike Smith <msmith@gsoft.com.au>, Sean Eric Fagan <sef@kithrup.com>,
and probably alot of others.
Submitted by: Jnathan Lemon <jlemon@americantv.com>
Add support for MODEX 320x240x256color with "unchained" adressing, giving
access to all 256K on all VGA's, those with that much memory that is :)
Also make sysmouse use the right resolution in graphics modes.
This code was eliminated when the PEND_INTS algorithm was added. But it was
discovered that PEND_INTS only worsen latency for FAST_INTR() routines,
which can't be marked pending.
Noticed & debugged by: dave adkins <adkin003@gold.tc.umn.edu>
Initially functionality is confined to 32-bit BIOS functions, however
it is envisioned that BIOS support may be enlisted for other
activities in the future.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
Mask the read value from the count register in order to return zero correctly
after TC, as per intel datasheet : "If it is not autoinitialised, this
register will have a count of FFFFH after TC"
comments. Remove reduntant extra addition that was unncessary, and
unneeded mask (asuming inb works correctly).
Submitted by: Stephen McKay <syssgm@dtir.qld.gov.au>
handlers don't skew the results of isa_dmastatus. The function can be
safely called with interrupts disabled.
Submitted by: Stephen McKay <syssgm@dtir.qld.gov.au>