I picked it up again. The scheduler is forked from ULE, but the
algorithm to detect an interactive process is almost completely
different with ULE, it comes from Linux paper "Understanding the
Linux 2.6.8.1 CPU Scheduler", although I still use same word
"score" as a priority boost in ULE scheduler.
Briefly, the scheduler has following characteristic:
1. Timesharing process's nice value is seriously respected,
timeslice and interaction detecting algorithm are based
on nice value.
2. per-cpu scheduling queue and load balancing.
3. O(1) scheduling.
4. Some cpu affinity code in wakeup path.
5. Support POSIX SCHED_FIFO and SCHED_RR.
Unlike scheduler 4BSD and ULE which using fuzzy RQ_PPQ, the scheduler
uses 256 priority queues. Unlike ULE which using pull and push, the
scheduelr uses pull method, the main reason is to let relative idle
cpu do the work, but current the whole scheduler is protected by the
big sched_lock, so the benefit is not visible, it really can be worse
than nothing because all other cpu are locked out when we are doing
balancing work, which the 4BSD scheduelr does not have this problem.
The scheduler does not support hyperthreading very well, in fact,
the scheduler does not make the difference between physical CPU and
logical CPU, this should be improved in feature. The scheduler has
priority inversion problem on MP machine, it is not good for
realtime scheduling, it can cause realtime process starving.
As a result, it seems the MySQL super-smack runs better on my
Pentium-D machine when using libthr, despite on UP or SMP kernel.
and KTR_IO as they were never used. Remove KTR_CLK since it was only
used for hardclock firing and use KTR_INTR there instead. Remove
KTR_CRITICAL since it was only used for crit enter/exit and use
KTR_CONTENTION instead.
critical_enter() and critical_exit() are now solely a mechanism for
deferring kernel preemptions. They no longer have any affect on
interrupts. This means that standalone critical sections are now very
cheap as they are simply unlocked integer increments and decrements for the
common case.
Spin mutexes now use a separate KPI implemented in MD code: spinlock_enter()
and spinlock_exit(). This KPI is responsible for providing whatever MD
guarantees are needed to ensure that a thread holding a spin lock won't
be preempted by any other code that will try to lock the same lock. For
now all archs continue to block interrupts in a "spinlock section" as they
did formerly in all critical sections. Note that I've also taken this
opportunity to push a few things into MD code rather than MI. For example,
critical_fork_exit() no longer exists. Instead, MD code ensures that new
threads have the correct state when they are created. Also, we no longer
try to fixup the idlethreads for APs in MI code. Instead, each arch sets
the initial curthread and adjusts the state of the idle thread it borrows
in order to perform the initial context switch.
This change is largely a big NOP, but the cleaner separation it provides
will allow for more efficient alternative locking schemes in other parts
of the kernel (bare critical sections rather than per-CPU spin mutexes
for per-CPU data for example).
Reviewed by: grehan, cognet, arch@, others
Tested on: i386, alpha, sparc64, powerpc, arm, possibly more
in the window between the beginning of panic() and entering the debugger,
it's possible to receive interrupts. If we receive an interrupt, don't
preempt if panicstr != NULL, as the system is in the process of failing, and
the preempting thread is likely to stumble over the failure. The typical
scenario is during the printf() in panic() prior to entering the debugger,
but when running with a slower console type such as serial console.
It could be that the panic string should be passed to the debugger to print,
so that it can run from the debugger's environment rather than a regular
kernel printf.
Glanced at by: jhb
This generates a KTR event for each critical section entered and exited.
It would be desirable to also log the filename and line number of the
source entering or exiting the critical section, but this requires
hacking up the critical section API, so I've not done that yet.
critical_exit as the process is getting scheduled to run. This is subotimal
but for now avoid the LOR between the scheduler and the sleepq systems.
This is a 5.3 candidate.
Submitted by: davidxu
MFC After: 3 days
Implement preemption between threads in the same ksegp in out of slot
situations to prevent priority inversion.
Tested by: pho
Reviewed by: jhb, julian
Approved by: sam (mentor)
MFC: ASAP
UMA_ZONE_NOFREE to guarantee type stability, so proc_fini() should
never be called. Move an assertion from proc_fini() to proc_dtor()
and garbage-collect the rest of the unreachable code. I have retained
vm_proc_dispose(), since I consider its disuse a bug.
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
FULL_PREEMPTION is defined. Add a runtime warning to ULE if PREEMPTION is
enabled (code inspired by the PREEMPTION warning in kern_switch.c). This
is a possible MT5 candidate.
is an effective band-aid for at least some of the scheduler corruption seen
recently. The real fix will involve protecting threads while they are
inconsistent, and will come later.
Submitted by: julian
is here so that we can gather stats on the nature of the recent rash of
hard lockups, and in this particular case panic the machine instead of
letting it deadlock forever.
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic