Summary:
Add "GELI Passphrase:" prompt to boot loader.
A new loader.conf(5) option of geom_eli_passphrase_prompt="YES" will now
allow you to enter your geli(8) root-mount credentials prior to invoking
the kernel.
See check-password.4th(8) for details.
Differential Revision: https://reviews.freebsd.org/D2105
Reviewed by: (your name[s] here)
MFC after: 3 days
X-MFC-to: stable/10
Relnotes: yes
Test Plan:
Drop a head copy of check-password.4th into /boot and then apply the patch
(only the patch to /boot/check-password.4th is required; no other changes are
required but you do have to have a HEAD copy of check-password.4th to
apply the patch).
NB: The rest of your /boot files can be up to 2 years old but no older.
NB: The test won't work unless your kernel has the following change
https://svnweb.freebsd.org/base?view=revision&revision=273489
Now, put into /boot/loader.conf:
geom_eli_passphrase_prompt="YES"
and reboot.
You should be prompted for a GELI passphrase before the menu (if enabled),
just after loading loader.conf(5).
NB: It doesn't matter if you're using GELI or not. However if you are using
GELI and a sufficiently new enough release (has SVN r273489) and you entered
the proper passphrase to mount your GELI encrypted root device(s), you should
notice that the boot process did not stop (you went from loader all the way to login).
Reviewers: cperciva, allanjude, scottl, kmoore
Subscribers: jkh, imp
Differential Revision: https://reviews.freebsd.org/D2105
NB: Using NULL for default values in-case someone
or something uncomments it and reboots. See
check-password.4th(8) for additional details.
MFC after: 3 days
X-MFC-to: stable/10 stable/9
output frequency of the "twiddle" IO progress indicator. The default
value is 1. For larger values N, the next stage of the animation is only
output on every Nth call to the output routine. A sufficiently large N
effectively disables the animation completely.
have chosen different (and more traditional) stateless/statuful
NAT64 as translation mechanism. Last non-trivial commits to both
faith(4) and faithd(8) happened more than 12 years ago, so I assume
it is time to drop RFC3142 in FreeBSD.
No objections from: net@
lindev(4) was only used to provide /dev/full which is now a standard feature of
FreeBSD. /dev/full was never linux-specific and provides a generally useful
feature.
Document this in UPDATING and bump __FreeBSD_version. This will be documented
in the PH shortly.
Reported by: jkim
menu. This is reported to save headaches on some PPC systems where unload
followed by load does not produce the desired results wherein if-given
the opportunicy to abort the initial loading sequence, you can customize
the first load.
Reviewed by: nwhitehorn, kan
Discussed on: -current
kernel selection menu to the beastie menu. List of kernels is taken from
`kernels' in loader.conf(5) as a space (or comma) separated list of names
to display (up to 9). If not set, default value is "kernel kernel.old".
Does not validate that kernels exist because the next enhancement will be
to allow selection of the root device.
Discussed on: -current
MFC after: 3 days
The ng_create_one() and ng_mkpeer() functions in network.subr are
now not used anywhere, but I left them, since they can be useful
in future in netgraph scripting.
Submitted by: pluknet
Looking pretty good; this mostly works now. New code includes:
* Read cached entropy at startup, both from files and from loader(8) preloaded entropy. Failures are soft, but announced. Untested.
* Use EVENTHANDLER to do above just before we go multiuser. Untested.
GIANT from VFS. This code is particulary broken and fragile and other
in-kernel implementations around, found in other operating systems,
don't really seem clean and solid enough to be imported at all.
If someone wants to reconsider in-kernel NTFS implementation for
inclusion again, a fair effort for completely fixing and cleaning it
up is expected.
In the while NTFS regular users can use FUSE interface and ntfs-3g
port to work with their NTFS partitions.
This is not targeted for MFC.
Winbond Super I/O chips.
With minor efforts it should be possible the extend the driver to support
further chips/revisions available from Winbond. In the simplest case
only new IDs need to be added, while different chipsets might require
their own function to enter extended function mode, etc.
Sponsored by: Sandvine Incorporated ULC (in 2011)
Reviewed by: emaste, brueffer
MFC after: 2 weeks
default/loader.conf
This should help people installing ${OS} to USB devices, where there are
frequently cases where kernel tries to mount root before actual umass sensing
is finished.
Reviewed by: mav
Approved by: re (kib)
MFC after: 1 week
The controller is commonly found on DM&P Vortex86 x86 SoC. The
driver supports all hardware features except flow control. The
flow control was intentionally disabled due to silicon bug.
DM&P Electronics, Inc. provided all necessary information including
sample board to write driver and answered many questions I had.
Many thanks for their support of FreeBSD.
H/W donated by: DM&P Electronics, Inc.
This driver was written by Alexander Pohoyda and greatly enhanced
by Nikolay Denev. I don't have these hardwares but this driver was
tested by Nikolay Denev and xclin.
Because SiS didn't release data sheet for this controller, programming
information came from Linux driver and OpenSolaris. Unlike other open
source driver for SiS190/191, sge(4) takes full advantage of TX/RX
checksum offloading and does not require additional copy operation in
RX handler.
The controller seems to have advanced offloading features like VLAN
hardware tag insertion/stripping, TCP segmentation offload(TSO) as
well as jumbo frame support but these features are not available
yet. Special thanks to xclin <xclin<> cs dot nctu dot edu dot tw>
who sent fix for receiving VLAN oversized frames.
Note that due to e.g. write throttling ('wdrain'), it can stall all the disk
I/O instead of just the device it's configured for. Using it for removable
media is therefore not a good idea.
Reviewed by: pjd (earlier version)
kern.ngroups+1. kern.ngroups can range from NGROUPS_MAX=1023 to
INT_MAX-1. Given that the Windows group limit is 1024, this range
should be sufficient for most applications.
MFC after: 1 month
devices that we also support, just not by default (thus only LINT or
module builds by default).
While currently there is only "/dev/full" [2], we are planning to see more
in the future. We may decide to change the module/dependency logic in the
future should the list grow too long.
This is not part of linux.ko as also non-linux binaries like kFreeBSD
userland or ports can make use of this as well.
Suggested by: rwatson [1] (name)
Submitted by: ed [2]
Discussed with: markm, ed, rwatson, kib (weeks ago)
Reviewed by: rwatson, brueffer (prev. version)
PR: kern/68961
MFC after: 6 weeks
things a bit:
- use dpcpu data to track the ifps with packets queued up,
- per-cpu locking and driver flags
- along with .nh_drainedcpu and NETISR_POLICY_CPU.
- Put the mbufs in flight reference count, preventing interfaces
from going away, under INVARIANTS as this is a general problem
of the stack and should be solved in if.c/netisr but still good
to verify the internal queuing logic.
- Permit changing the MTU to virtually everythinkg like we do for loopback.
Hook epair(4) up to the build.
Approved by: re (kib)
DP83065 Saturn Gigabit Ethernet controllers. These are the successors
of the Sun GEM controllers and still have a similar but extended transmit
logic. As such this driver is based on gem(4).
Thanks to marcel@ for providing a Sun Quad GigaSwift Ethernet UTP (QGE)
card which was vital for getting this driver to work on architectures
not using Open Firmware.
Approved by: re (kib)
MFC after: 2 weeks
controller. These controllers are also known as L1C(AR8131) and
L2C(AR8132) respectively. These controllers resembles the first
generation controller L1 but usage of different descriptor format
and new register mappings over L1 register space requires a new
driver. There are a couple of registers I still don't understand
but the driver seems to have no critical issues for performance and
stability. Currently alc(4) supports the following hardware
features.
o MSI
o TCP Segmentation offload
o Hardware VLAN tag insertion/stripping
o Tx/Rx interrupt moderation
o Hardware statistics counters(dev.alc.%d.stats)
o Jumbo frame
o WOL
AR8131/AR8132 also supports Tx checksum offloading but I disabled
it due to stability issues. I'm not sure this comes from broken
sample boards or hardware bugs. If you know your controller works
without problems you can still enable it. The controller has a
silicon bug for Rx checksum offloading, so the feature was not
implemented.
I'd like to say big thanks to Atheros. Atheros kindly sent sample
boards to me and answered several questions I had.
HW donated by: Atheros Communications, Inc.
driver in Linux 2.6. uscanner was just a simple wrapper around a fifo and
contained no logic, the default interface is now libusb (supported by sane).
Reviewed by: HPS
controller. The controller is also known as L1E(AR8121) and
L2E(AR8113/AR8114). Unlike its predecessor Attansic L1,
AR8121/AR8113/AR8114 uses completely different Rx logic such that
it requires separate driver. Datasheet for AR81xx is not available
to open source driver writers but it shares large part of Tx and
PHY logic of L1. I still don't understand some part of register
meaning and some MAC statistics counters but the driver seems to
have no critical issues for performance and stability.
The AR81xx requires copy operation to pass received frames to upper
stack such that ale(4) consumes a lot of CPU cycles than that of
other controller. A couple of silicon bugs also adds more CPU
cycles to address the known hardware bug. However, if you have fast
CPU you can still saturate the link.
Currently ale(4) supports the following hardware features.
- MSI.
- TCP Segmentation offload.
- Hardware VLAN tag insertion/stripping with checksum offload.
- Tx TCP/UDP checksum offload and Rx IP/TCP/UDP checksum offload.
- Tx/Rx interrupt moderation.
- Hardware statistics counters.
- Jumbo frame.
- WOL.
AR81xx PCIe ethernet controllers are mainly found on ASUS EeePC or
P5Q series of ASUS motherboards. Special thanks to Jeremy Chadwick
who sent the hardware to me. Without his donation writing a driver
for AR81xx would never have been possible. Big thanks to all people
who reported feedback or tested patches.
HW donated by: koitsu
Tested by: bsam, Joao Barros <joao.barros <> gmail DOT com >
Jan Henrik Sylvester <me <> janh DOT de >
Ivan Brawley < ivan <> brawley DOT id DOT au >,
CURRENT ML