Commit Graph

12 Commits

Author SHA1 Message Date
Konstantin Belousov
c30578feeb Provide part of the mitigation for L1TF-VMM.
On the guest entry in bhyve, flush L1 data cache, using either L1D
flush command MSR if available, or by reading enough uninteresting
data to fill whole cache.

Flush is automatically enabled on CPUs which do not report RDCL_NO,
and can be disabled with the hw.vmm.l1d_flush tunable/kenv.

Security:	CVE-2018-3646
Reviewed by:	emaste. jhb, Tony Luck <tony.luck@intel.com>
Sponsored by:	The FreeBSD Foundation
2018-08-14 17:29:41 +00:00
Pedro F. Giffuni
c49761dd57 sys/amd64: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 15:03:07 +00:00
Neel Natu
81d597b736 There is no need to save and restore the host's return address in the
'struct vmxctx'. It is preserved on the host stack across a guest entry
and exit and just restoring the host's '%rsp' is sufficient.

Pointed out by:	grehan@
2014-04-11 20:15:53 +00:00
Neel Natu
953c2c47eb Avoid doing unnecessary nested TLB invalidations.
Prior to this change the cached value of 'pm_eptgen' was tracked per-vcpu
and per-hostcpu. In the degenerate case where 'N' vcpus were sharing
a single hostcpu this could result in 'N - 1' unnecessary TLB invalidations.
Since an 'invept' invalidates mappings for all VPIDs the first 'invept'
is sufficient.

Fix this by moving the 'eptgen[MAXCPU]' array from 'vmxctx' to 'struct vmx'.

If it is known that an 'invept' is going to be done before entering the
guest then it is safe to skip the 'invvpid'. The stat VPU_INVVPID_SAVED
counts the number of 'invvpid' invalidations that were avoided because
they were subsumed by an 'invept'.

Discussed with:	grehan
2014-02-04 02:45:08 +00:00
Neel Natu
f7d4742540 Enable the "Acknowledge Interrupt on VM exit" VM-exit control.
This control is needed to enable "Posted Interrupts" and is present in all
the Intel VT-x implementations supported by bhyve so enable it as the default.

With this VM-exit control enabled the processor will acknowledge the APIC and
store the vector number in the "VM-Exit Interruption Information" field. We
now call the interrupt handler "by hand" through the IDT entry associated
with the vector.
2014-01-11 03:14:05 +00:00
Neel Natu
0492757c70 Restructure the VMX code to enter and exit the guest. In large part this change
hides the setjmp/longjmp semantics of VM enter/exit. vmx_enter_guest() is used
to enter guest context and vmx_exit_guest() is used to transition back into
host context.

Fix a longstanding race where a vcpu interrupt notification might be ignored
if it happens after vmx_inject_interrupts() but before host interrupts are
disabled in vmx_resume/vmx_launch. We now called vmx_inject_interrupts() with
host interrupts disabled to prevent this.

Suggested by:	grehan@
2014-01-01 21:17:08 +00:00
Neel Natu
3de8386283 Use vmcs_read() and vmcs_write() in preference to vmread() and vmwrite()
respectively. The vmcs_xxx() functions provide inline error checking of
all accesses to the VMCS.
2013-12-18 06:24:21 +00:00
Neel Natu
e2f5d9a129 Remove unnecessary includes of <machine/pmap.h>
Requested by:	alc@
2013-10-29 02:25:18 +00:00
Neel Natu
318224bbe6 Merge projects/bhyve_npt_pmap into head.
Make the amd64/pmap code aware of nested page table mappings used by bhyve
guests. This allows bhyve to associate each guest with its own vmspace and
deal with nested page faults in the context of that vmspace. This also
enables features like accessed/dirty bit tracking, swapping to disk and
transparent superpage promotions of guest memory.

Guest vmspace:
Each bhyve guest has a unique vmspace to represent the physical memory
allocated to the guest. Each memory segment allocated by the guest is
mapped into the guest's address space via the 'vmspace->vm_map' and is
backed by an object of type OBJT_DEFAULT.

pmap types:
The amd64/pmap now understands two types of pmaps: PT_X86 and PT_EPT.

The PT_X86 pmap type is used by the vmspace associated with the host kernel
as well as user processes executing on the host. The PT_EPT pmap is used by
the vmspace associated with a bhyve guest.

Page Table Entries:
The EPT page table entries as mostly similar in functionality to regular
page table entries although there are some differences in terms of what
bits are used to express that functionality. For e.g. the dirty bit is
represented by bit 9 in the nested PTE as opposed to bit 6 in the regular
x86 PTE. Therefore the bitmask representing the dirty bit is now computed
at runtime based on the type of the pmap. Thus PG_M that was previously a
macro now becomes a local variable that is initialized at runtime using
'pmap_modified_bit(pmap)'.

An additional wrinkle associated with EPT mappings is that older Intel
processors don't have hardware support for tracking accessed/dirty bits in
the PTE. This means that the amd64/pmap code needs to emulate these bits to
provide proper accounting to the VM subsystem. This is achieved by using
the following mapping for EPT entries that need emulation of A/D bits:
               Bit Position           Interpreted By
PG_V               52                 software (accessed bit emulation handler)
PG_RW              53                 software (dirty bit emulation handler)
PG_A               0                  hardware (aka EPT_PG_RD)
PG_M               1                  hardware (aka EPT_PG_WR)

The idea to use the mapping listed above for A/D bit emulation came from
Alan Cox (alc@).

The final difference with respect to x86 PTEs is that some EPT implementations
do not support superpage mappings. This is recorded in the 'pm_flags' field
of the pmap.

TLB invalidation:
The amd64/pmap code has a number of ways to do invalidation of mappings
that may be cached in the TLB: single page, multiple pages in a range or the
entire TLB. All of these funnel into a single EPT invalidation routine called
'pmap_invalidate_ept()'. This routine bumps up the EPT generation number and
sends an IPI to the host cpus that are executing the guest's vcpus. On a
subsequent entry into the guest it will detect that the EPT has changed and
invalidate the mappings from the TLB.

Guest memory access:
Since the guest memory is no longer wired we need to hold the host physical
page that backs the guest physical page before we can access it. The helper
functions 'vm_gpa_hold()/vm_gpa_release()' are available for this purpose.

PCI passthru:
Guest's with PCI passthru devices will wire the entire guest physical address
space. The MMIO BAR associated with the passthru device is backed by a
vm_object of type OBJT_SG. An IOMMU domain is created only for guest's that
have one or more PCI passthru devices attached to them.

Limitations:
There isn't a way to map a guest physical page without execute permissions.
This is because the amd64/pmap code interprets the guest physical mappings as
user mappings since they are numerically below VM_MAXUSER_ADDRESS. Since PG_U
shares the same bit position as EPT_PG_EXECUTE all guest mappings become
automatically executable.

Thanks to Alan Cox and Konstantin Belousov for their rigorous code reviews
as well as their support and encouragement.

Thanks for John Baldwin for reviewing the use of OBJT_SG as the backing
object for pci passthru mmio regions.

Special thanks to Peter Holm for testing the patch on short notice.

Approved by:	re
Discussed with:	grehan
Reviewed by:	alc, kib
Tested by:	pho
2013-10-05 21:22:35 +00:00
Neel Natu
eeefa4e4be Test for AST pending with interrupts disabled right before entering the guest.
If an IPI was delivered to this cpu before interrupts were disabled
then return right away via vmx_setjmp() with a return value of VMX_RETURN_AST.

Obtained from:	NetApp
2012-10-23 02:20:42 +00:00
Neel Natu
ad54f37429 Fix a long standing bug in VMXCTX_GUEST_RESTORE().
There was an assumption by the "callers" of this macro that on "return" the
%rsp will be pointing to the 'vmxctx'. The macro was not doing this and thus
when trying to restore host state on an error from "vmlaunch" or "vmresume"
we were treating the memory locations on the host stack as 'struct vmxctx'.
This led to all sorts of weird bugs like double faults or invalid instruction
faults.

This bug is exposed by the -O2 option used to compile the kernel module. With
the -O2 flag the compiler will optimize the following piece of code:

	int loopstart = 1;
	...
	if (loopstart) {
		loopstart = 0;
		vmx_launch();
	} else
		vmx_resume();

into this:

	vmx_launch();

Since vmx_launch() and vmx_resume() are declared to be __dead2 functions the
compiler is free to do this. The compiler has no way to know that the
functions return indirectly through vmx_setjmp(). This optimization in turn
leads us to trigger the bug in VMXCTX_GUEST_RESTORE().

With this change we can boot a 8.1 guest on a 9.0 host.

Reported by: jhb@
2011-05-20 03:23:09 +00:00
Peter Grehan
366f60834f Import of bhyve hypervisor and utilities, part 1.
vmm.ko - kernel module for VT-x, VT-d and hypervisor control
  bhyve  - user-space sequencer and i/o emulation
  vmmctl - dump of hypervisor register state
  libvmm - front-end to vmm.ko chardev interface

bhyve was designed and implemented by Neel Natu.

Thanks to the following folk from NetApp who helped to make this available:
	Joe CaraDonna
	Peter Snyder
	Jeff Heller
	Sandeep Mann
	Steve Miller
	Brian Pawlowski
2011-05-13 04:54:01 +00:00