devmem is used to represent MMIO devices like the boot ROM or a VESA framebuffer
where doing a trap-and-emulate for every access is impractical. devmem is a
hybrid of system memory (sysmem) and emulated device models.
devmem is mapped in the guest address space via nested page tables similar
to sysmem. However the address range where devmem is mapped may be changed
by the guest at runtime (e.g. by reprogramming a PCI BAR). Also devmem is
usually mapped RO or RW as compared to RWX mappings for sysmem.
Each devmem segment is named (e.g. "bootrom") and this name is used to
create a device node for the devmem segment (e.g. /dev/vmm/testvm.bootrom).
The device node supports mmap(2) and this decouples the host mapping of
devmem from its mapping in the guest address space (which can change).
Reviewed by: tychon
Discussed with: grehan
Differential Revision: https://reviews.freebsd.org/D2762
MFC after: 4 weeks
after decoding the instruction matches the one provided by hardware.
Prior to r283293 'vie->num_valid' used to contain the actual length of
the instruction whereas now it contains the maximum instruction length
possible. This introduced a bug when calculating a RIP-relative base address.
Fix this by using 'vie->num_processed' rather than 'vie->num_valid' as the
length of the emulated instruction.
Reported and tested by: tychon
MFC after: 1 week
Prior to this change both functions returned 0 for success, -1 for failure
and +1 to indicate that an exception was injected into the guest.
The numerical value of ERESTART also happens to be -1 so when these functions
returned -1 it had to be translated to a positive errno value to prevent the
VM_RUN ioctl from being inadvertently restarted. This made it easy to introduce
bugs when writing emulation code.
Fix this by adding an 'int *guest_fault' parameter and setting it to '1' if
an exception was delivered to the guest. The return value is 0 or EFAULT so
no additional translation is needed.
Reviewed by: tychon
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D2428
%rdi, %rsi, etc are inadvertently bypassed along with the check to
see if the instruction needs to be repeated per the 'rep' prefix.
Add "MOVS" instruction support for the 'MMIO to MMIO' case.
Reviewed by: neel
code segment base address.
Also if an instruction doesn't support a mod R/M (modRM) byte, don't
be concerned if the CPU is in real mode.
Reviewed by: neel
These instructions are emitted by 'bus_space_read_region()' when accessing
MMIO regions.
Since MOVS can be used with a repeat prefix start decoding the REPZ and
REPNZ prefixes. Also start decoding the segment override prefix since MOVS
allows overriding the source operand segment register.
Tested by: tychon
MFC after: 1 week
instruction bytes in the VMCB on a nested page fault. This is useful because
it saves having to walk the guest page tables to fetch the instruction.
vie_init() now takes two additional parameters 'inst_bytes' and 'inst_len'
that map directly to 'vie->inst[]' and 'vie->num_valid'.
The instruction emulation handler skips calling 'vmm_fetch_instruction()'
if 'vie->num_valid' is non-zero.
The use of this capability can be turned off by setting the sysctl/tunable
'hw.vmm.svm.disable_npf_assist' to '1'.
Reviewed by: Anish Gupta (akgupt3@gmail.com)
Discussed with: grehan
proper constraint for 'x'. The "+r" constraint indicates that 'x' is an
input and output register operand.
While here generate code for different variants of getcc() using a macro
GETCC(sz) where 'sz' indicates the operand size.
Update the status bits in %rflags when emulating AND and OR opcodes.
Reviewed by: grehan
Add the ACPI MCFG table to advertise the extended config memory window.
Introduce a new flag MEM_F_IMMUTABLE for memory ranges that cannot be deleted
or moved in the guest's address space. The PCI extended config space is an
example of an immutable memory range.
Add emulation for the "movzw" instruction. This instruction is used by FreeBSD
to read a 16-bit extended config space register.
CR: https://phabric.freebsd.org/D505
Reviewed by: jhb, grehan
Requested by: tychon
It is not possible to PUSH a 32-bit operand on the stack in 64-bit mode. The
default operand size for PUSH is 64-bits and the operand size override prefix
changes that to 16-bits.
vm_copy_setup() can return '1' if it encounters a fault when walking the
guest page tables. This is a guest issue and is now handled properly by
resuming the guest to handle the fault.
instruction emulation [1].
Fix bug in emulation of opcode 0x8A where the destination is a legacy high
byte register and the guest vcpu is in 32-bit mode. Prior to this change
instead of modifying %ah, %bh, %ch or %dh the emulation would end up
modifying %spl, %bpl, %sil or %dil instead.
Add support for moffsets by treating it as a 2, 4 or 8 byte immediate value
during instruction decoding.
Fix bug in verify_gla() where the linear address computed after decoding
the instruction was not being truncated to the effective address size [2].
Tested by: Leon Dang [1]
Reported by: Peter Grehan [2]
Sponsored by: Nahanni Systems
API function 'vie_calculate_gla()'.
While the current implementation is simplistic it forms the basis of doing
segmentation checks if the guest is in 32-bit protected mode.
'struct vm_guest_paging'.
Check for canonical addressing in vmm_gla2gpa() and inject a protection
fault into the guest if a violation is detected.
If the page table walk is restarted in vmm_gla2gpa() then reset 'ptpphys' to
point to the root of the page tables.
indicate the faulting linear address.
If the guest PML4 entry has the PG_PS bit set then inject a page fault into
the guest with the PGEX_RSV bit set in the error_code.
Get rid of redundant checks for the PG_RW violations when walking the page
tables.
the UART FIFO.
The emulation is constrained in a number of ways: 64-bit only, doesn't check
for all exception conditions, limited to i/o ports emulated in userspace.
Some of these constraints will be relaxed in followup commits.
Requested by: grehan
Reviewed by: tychon (partially and a much earlier version)
Set the accessed and dirty bits in the page table entry. If it fails then
restart the page table walk from the beginning. This might happen if another
vcpu modifies the page tables simultaneously.
Reviewed by: alc, kib
to a guest physical address.
PG_PS (page size) field is valid only in a PDE or a PDPTE so it is now
checked only in non-terminal paging entries.
Ignore the upper 32-bits of the CR3 for PAE paging.
- Similar to the hack for bootinfo32.c in userboot, define
_MACHINE_ELF_WANT_32BIT in the load_elf32 file handlers in userboot.
This allows userboot to load 32-bit kernels and modules.
- Copy the SMAP generation code out of bootinfo64.c and into its own
file so it can be shared with bootinfo32.c to pass an SMAP to the i386
kernel.
- Use uint32_t instead of u_long when aligning module metadata in
bootinfo32.c in userboot, as otherwise the metadata used 64-bit
alignment which corrupted the layout.
- Populate the basemem and extmem members of the bootinfo struct passed
to 32-bit kernels.
- Fix the 32-bit stack in userboot to start at the top of the stack
instead of the bottom so that there is room to grow before the
kernel switches to its own stack.
- Push a fake return address onto the 32-bit stack in addition to the
arguments normally passed to exec() in the loader. This return
address is needed to convince recover_bootinfo() in the 32-bit
locore code that it is being invoked from a "new" boot block.
- Add a routine to libvmmapi to setup a 32-bit flat mode register state
including a GDT and TSS that is able to start the i386 kernel and
update bhyveload to use it when booting an i386 kernel.
- Use the guest register state to determine the CPU's current instruction
mode (32-bit vs 64-bit) and paging mode (flat, 32-bit, PAE, or long
mode) in the instruction emulation code. Update the gla2gpa() routine
used when fetching instructions to handle flat mode, 32-bit paging, and
PAE paging in addition to long mode paging. Don't look for a REX
prefix when the CPU is in 32-bit mode, and use the detected mode to
enable the existing 32-bit mode code when decoding the mod r/m byte.
Reviewed by: grehan, neel
MFC after: 1 month
- No emulation of A/D bits is required since AMD-V RVI
supports A/D bits.
- Enable pmap PT_RVI support(w/o PAT) which is required for
memory over-commit support.
- Other minor fixes:
* Make use of VMCB EXITINTINFO field. If a #VMEXIT happens while
delivering an interrupt, EXITINTINFO has all the details that bhyve
needs to inject the same interrupt.
* SVM h/w decode assist code was incomplete - removed for now.
* Some minor code clean-up (more coming).
Submitted by: Anish Gupta (akgupt3@gmail.com)
Make the amd64/pmap code aware of nested page table mappings used by bhyve
guests. This allows bhyve to associate each guest with its own vmspace and
deal with nested page faults in the context of that vmspace. This also
enables features like accessed/dirty bit tracking, swapping to disk and
transparent superpage promotions of guest memory.
Guest vmspace:
Each bhyve guest has a unique vmspace to represent the physical memory
allocated to the guest. Each memory segment allocated by the guest is
mapped into the guest's address space via the 'vmspace->vm_map' and is
backed by an object of type OBJT_DEFAULT.
pmap types:
The amd64/pmap now understands two types of pmaps: PT_X86 and PT_EPT.
The PT_X86 pmap type is used by the vmspace associated with the host kernel
as well as user processes executing on the host. The PT_EPT pmap is used by
the vmspace associated with a bhyve guest.
Page Table Entries:
The EPT page table entries as mostly similar in functionality to regular
page table entries although there are some differences in terms of what
bits are used to express that functionality. For e.g. the dirty bit is
represented by bit 9 in the nested PTE as opposed to bit 6 in the regular
x86 PTE. Therefore the bitmask representing the dirty bit is now computed
at runtime based on the type of the pmap. Thus PG_M that was previously a
macro now becomes a local variable that is initialized at runtime using
'pmap_modified_bit(pmap)'.
An additional wrinkle associated with EPT mappings is that older Intel
processors don't have hardware support for tracking accessed/dirty bits in
the PTE. This means that the amd64/pmap code needs to emulate these bits to
provide proper accounting to the VM subsystem. This is achieved by using
the following mapping for EPT entries that need emulation of A/D bits:
Bit Position Interpreted By
PG_V 52 software (accessed bit emulation handler)
PG_RW 53 software (dirty bit emulation handler)
PG_A 0 hardware (aka EPT_PG_RD)
PG_M 1 hardware (aka EPT_PG_WR)
The idea to use the mapping listed above for A/D bit emulation came from
Alan Cox (alc@).
The final difference with respect to x86 PTEs is that some EPT implementations
do not support superpage mappings. This is recorded in the 'pm_flags' field
of the pmap.
TLB invalidation:
The amd64/pmap code has a number of ways to do invalidation of mappings
that may be cached in the TLB: single page, multiple pages in a range or the
entire TLB. All of these funnel into a single EPT invalidation routine called
'pmap_invalidate_ept()'. This routine bumps up the EPT generation number and
sends an IPI to the host cpus that are executing the guest's vcpus. On a
subsequent entry into the guest it will detect that the EPT has changed and
invalidate the mappings from the TLB.
Guest memory access:
Since the guest memory is no longer wired we need to hold the host physical
page that backs the guest physical page before we can access it. The helper
functions 'vm_gpa_hold()/vm_gpa_release()' are available for this purpose.
PCI passthru:
Guest's with PCI passthru devices will wire the entire guest physical address
space. The MMIO BAR associated with the passthru device is backed by a
vm_object of type OBJT_SG. An IOMMU domain is created only for guest's that
have one or more PCI passthru devices attached to them.
Limitations:
There isn't a way to map a guest physical page without execute permissions.
This is because the amd64/pmap code interprets the guest physical mappings as
user mappings since they are numerically below VM_MAXUSER_ADDRESS. Since PG_U
shares the same bit position as EPT_PG_EXECUTE all guest mappings become
automatically executable.
Thanks to Alan Cox and Konstantin Belousov for their rigorous code reviews
as well as their support and encouragement.
Thanks for John Baldwin for reviewing the use of OBJT_SG as the backing
object for pci passthru mmio regions.
Special thanks to Peter Holm for testing the patch on short notice.
Approved by: re
Discussed with: grehan
Reviewed by: alc, kib
Tested by: pho
immediate operand. The presence of an SIB byte in decoding the ModR/M field
would cause 'imm_bytes' to not be set to the correct value.
Fix this by initializing 'imm_bytes' independent of the ModR/M decoding.
Reported by: grehan@
Approved by: re@