Introduce ATA_CAM kernel option, turning ata(4) controller drivers into
cam(4) interface modules. When enabled, this options deprecates all ata(4)
peripheral drivers (ad, acd, ...) and interfaces and allows cam(4) drivers
(ada, cd, ...) and interfaces to be natively used instead.
As side effect of this, ata(4) mode setting code was completely rewritten
to make controller API more strict and permit above change. While doing
this, SATA revision was separated from PATA mode. It allows DMA-incapable
SATA devices to operate and makes hw.ata.atapi_dma tunable work again.
Also allow ata(4) controller drivers (except some specific or broken ones)
to handle larger data transfers. Previous constraint of 64K was artificial
and is not really required by PCI ATA BM specification or hardware.
Submitted by: nwitehorn (powerpc part)
simplifies certain device attachments (Kauai ATA, for instance), and makes
possible others on new hardware.
On G5 systems, there are several otherwise standard PCI devices
(Serverworks SATA) that will not allow their interrupt properties to be
written, so this information must be supplied directly from Open Firmware.
Obtained from: sparc64
the PIC also informs the platform at which IRQ level it can start
assigning IPIs, since this can depend on the number of IRQs
supported for external interrupts.
a pointer to struct bus_space. The structure contains function
pointers that do the actual bus space access.
The reason for this change is that previously all bus space
accesses were little endian (i.e. had an explicit byte-swap
for multi-byte accesses), because all busses on Macs are little
endian.
The upcoming support for Book E, and in particular the E500
core, requires support for big-endian busses because all
embedded peripherals are in the native byte-order.
With this change, there's no distinction between I/O port
space and memory mapped I/O. PowerPC doesn't have I/O port
space. Busses assign tags based on the byte-order only.
For that purpose, two global structures exist (bs_be_tag and
bs_le_tag), of which the address can be taken to get a valid
tag.
Obtained from: Juniper, Semihalf
o Revamp the PIC I/F to only abstract the PIC hardware. The
resource handling has been moved to nexus, where it belongs.
o Include EOI and MASK+EOI methods to the PIC I/F in support of
INTR_FILTER.
o With the allocation of interrupt resources and setup of
interrupt handlers in the common platform code we can delay
talking to the PIC hardware after enumeration of all devices.
Introduce a call to powerpc_intr_enable() in configure_final()
to achieve that and have powerpc_setup_intr() only program the
PIC when !cold.
o As a consequence of the above, remove all early_attach() glue
from the OpenPIC and Heathrow PIC drivers and have them
register themselves when they're found during enumeration.
o Decouple the interrupt vector from the interrupt request line.
Allocate vectors increasingly so that they can be used for
the intrcnt index as well. Extend the Heathrow PIC driver to
translate between IRQ and vector. The OpenPIC driver already
has the support for vectors in hardware.
Approved by: re (blanket)
- Remove __RMAN_RESORUCE_VISIBLE again. It's no longer required either
because of the above change or because struct rman is no longer hidden.
Reviewed by: grehan
Tested by: cross-compile on i386
- add an option for the output device in the hope that this can
be made non-blocking at some stage.
- define an alias for the disk device, required by dev/ofw/ofw_disk.c
- shift iobus to 0x9000000 so as not to clash with the OpenFirmware
entry point of 0x8000400 when address decoding.
- down-tone comments about the disk dev config :-)
the MacIO chip and PSIM's IOBus. Bus-specific drivers should
use the identify method to attach themselves to nexus so
interrupt can be allocated before the h/w is probed. The
'early attach' routine in openpic is used for this stage
of boot. When h/w is probed, the openpic can be attached
properly. It will enable interrupts allocated prior to
this.