page directory pages from VM_MIN_KERNEL_ADDRESS through the end of the
kernel's bss. Specifically, the dependence was in pmap_growkernel()'s one-
time initialization of kernel_vm_end, not in its main body. (I could not,
however, resist the urge to optimize the main body.)
Reduce the number of preallocated page directory pages to just those needed
to support NKPT page table pages. (In fact, this allows me to revert a
couple of my earlier changes to create_pagetables().)
page table pages have to be preallocated ...'', violates an assumption made
by minidumpsys(): kernel_vm_end is the highest virtual address that has ever
been used by the kernel. Now, however, the kernel code, data, and bss may
reside at addresses beyond kernel_vm_end. This revision modifies the upper
bound on minidumpsys()'s two page table traversals to account for this
possibility.
to vm_page_alloc() instead of VM_ALLOC_SYSTEM. VM_ALLOC_SYSTEM was the
logical choice before FreeBSD 7.0 because VM_ALLOC_INTERRUPT could not
reclaim a cached page. Simply put, there was no ordering between
VM_ALLOC_INTERRUPT and VM_ALLOC_SYSTEM as to which "dug deeper" into the
cache and free queues. Now, there is; VM_ALLOC_INTERRUPT dominates
VM_ALLOC_SYSTEM.
While I'm here, teach pmap_growkernel() to request a prezeroed page.
MFC after: 1 week
ceiling as a fraction of the kernel map's size rather than an absolute
quantity. Thus, scaling of the kmem map's size will be automatic with
changes to the kernel map's size.
in practice, the error (currently) makes no difference because the computation
performed by KVADDR() hides the error. This revision fixes the error.
Also, eliminate a (now) unused definition.
maximum size of the kmem map can be greater than 4GB, there is little point
in making the kernel virtual address space larger than 6GB.
Tested by: kris@
Now that st_rdev is being automatically generated by the kernel, there
is no need to define static major/minor numbers for the iodev and
memdev. We still need the minor numbers for the memdev, however, to
distinguish between /dev/mem and /dev/kmem.
Approved by: philip (mentor)
KERNBASE and VM_MIN_KERNEL_ADDRESS are no longer the same, the physical
memory allocated during bootstrap will be offset from the low-end of the
kernel's page table.
address space on the amd64 architecture. The amd64 architecture
requires kernel code and global variables to reside in the highest 2GB
of the 64-bit virtual address space. Thus, KERNBASE cannot change.
However, KERNBASE is sometimes used as the start of the kernel virtual
address space. Henceforth, VM_MIN_KERNEL_ADDRESS should be used
instead. Since KERNBASE and VM_MIN_KERNEL_ADDRESS are still the same
address, there should be no visible effect from this change (yet).
That said, kris@ has tested crash dumps under the full patch that
increases the kernel virtual address space on amd64 to 6GB.
Tested by: kris@
address space on the amd64 architecture. The amd64 architecture
requires kernel code and global variables to reside in the highest 2GB
of the 64-bit virtual address space. Thus, KERNBASE cannot change.
However, KERNBASE is sometimes used as the start of the kernel virtual
address space. Henceforth, VM_MIN_KERNEL_ADDRESS should be used
instead. Since KERNBASE and VM_MIN_KERNEL_ADDRESS are still the same
address, there should be no visible effect from this change (yet).
before PG_M. This sometimes prevents unnecessary removal of write access
from a PTE. Overall, the net result is fewer demotions and promotion
failures.
page table page. The direction of the traversal can matter if
pmap_promote_pde() has to remove write access (PG_RW) from a PTE that hasn't
been modified (PG_M). In general, if there are two or more such PTEs to
choose among, it is better to write protect the one nearer the high end of
the page table page rather than the low end. This is because most programs
access memory in an ascending direction. The net result of this change is a
sometimes significant reduction in the number of failed promotion attempts
and the number of pages that are write protected by pmap_promote_pde().
promotion within the kernel's address space. Specifically,
pmap_promote_pde() is only called when the page table page (PTP) that
is referenced by the given PDE has a full "use count", i.e., its
wire_count is 512. Although this guarantees for a user address space
that all 512 PTEs in the PTP hold valid mappings, the same is not true
of the kernel's address space. A kernel PTP always has a use count of
512 regardless of the state of the PTEs. Therefore,
pmap_promote_pde() should not assume (or assert) that the first PTE in
the PTP is valid.
parts relied on the now removed NET_NEEDS_GIANT.
Most of I4B has been disconnected from the build
since July 2007 in HEAD/RELENG_7.
This is what was removed:
- configuration in /etc/isdn
- examples
- man pages
- kernel configuration
- sys/i4b (drivers, layers, include files)
- user space tools
- i4b support from ppp
- further documentation
Discussed with: rwatson, re
what Linux does. This is because robust futexes are mostly
userspace thing which we cannot alter. Two syscalls maintain
pointer to userspace list and when process exits a routine
walks this list waking up processes sleeping on futexes
from that list.
Reviewed by: kib (mentor)
MFC after: 1 month
from idle over the next tick.
- Add a new MD routine, cpu_wake_idle() to wakeup idle threads who are
suspended in cpu specific states. This function can fail and cause the
scheduler to fall back to another mechanism (ipi).
- Implement support for mwait in cpu_idle() on i386/amd64 machines that
support it. mwait is a higher performance way to synchronize cpus
as compared to hlt & ipis.
- Allow selecting the idle routine by name via sysctl machdep.idle. This
replaces machdep.cpu_idle_hlt. Only idle routines supported by the
current machine are permitted.
Sponsored by: Nokia
for better structure.
Much of this is related to <sys/clock.h>, which should really have
been called <sys/calendar.h>, but unless and until we need the name,
the repocopy can wait.
In general the kernel does not know about minutes, hours, days,
timezones, daylight savings time, leap-years and such. All that
is theoretically a matter for userland only.
Parts of kernel code does however care: badly designed filesystems
store timestamps in local time and RTC chips almost universally
track time in a YY-MM-DD HH:MM:SS format, and sometimes in local
timezone instead of UTC. For this we have <sys/clock.h>
<sys/time.h> on the other hand, deals with time_t, timeval, timespec
and so on. These know only seconds and fractions thereof.
Move inittodr() and resettodr() prototypes to <sys/time.h>.
Retain the names as it is one of the few surviving PDP/VAX references.
Move startrtclock() to <machine/clock.h> on relevant platforms, it
is a MD call between machdep.c/clock.c. Remove references to it
elsewhere.
Remove a lot of unnecessary <sys/clock.h> includes.
Move the machdep.disable_rtc_set sysctl to subr_rtc.c where it belongs.
XXX: should be kern.disable_rtc_set really, it's not MD.
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
noise from sio per unit. sio likes to probe if interrupts are configured
correctly by looking at the pending bits of the atpic in order to put a
non-fatal warning on the console. I think I'd rather read the pending
bits from the apics, but I'm not sure its worth the hassle.