Allow users to specify multiple dump configurations in a prioritized list.
This enables fallback to secondary device(s) if primary dump fails. E.g.,
one might configure a preference for netdump, but fallback to disk dump as a
second choice if netdump is unavailable.
This change does not list-ify netdump configuration, which is tracked
separately from ordinary disk dumps internally; only one netdump
configuration can be made at a time, for now. It also does not implement
IPv6 netdump.
savecore(8) is already capable of scanning and iterating multiple devices
from /etc/fstab or passed on the command line.
This change doesn't update the rc or loader variables 'dumpdev' in any way;
it can still be set to configure a single dump device, and rc.d/savecore
still uses it as a single device. Only dumpon(8) is updated to be able to
configure the more complicated configurations for now.
As part of revving the ABI, unify netdump and disk dump configuration ioctl
/ structure, and leave room for ipv6 netdump as a future possibility.
Backwards-compatibility ioctls are added to smooth ABI transition,
especially for developers who may not keep kernel and userspace perfectly
synced.
Reviewed by: markj, scottl (earlier version)
Relnotes: maybe
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D19996
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
It is alike to RAID1, but with dedicating master and recovery disks and
providing manual control over synchronization. It allows to use recovery
disk as snapshot of the master disk from the time of the last sync.
This implementation is not functionaly complete comparing to Windows,
but it is better then silent conversion to RAID1 on first boot.
If at least one subdisk in the volume supports it, BIO_DELETE requests
will be propagated down. Unfortunatelly, for RAID levels with redundancy
unmapped blocks will be mapped back during first rebuild/resync process.
Sponsored by: iXsystems, Inc.
MFC after: 1 month
Add new RAID GEOM class, that is going to replace ataraid(4) in supporting
various BIOS-based software RAIDs. Unlike ataraid(4) this implementation
does not depend on legacy ata(4) subsystem and can be used with any disk
drivers, including new CAM-based ones (ahci(4), siis(4), mvs(4), ata(4)
with `options ATA_CAM`). To make code more readable and extensible, this
implementation follows modular design, including core part and two sets
of modules, implementing support for different metadata formats and RAID
levels.
Support for such popular metadata formats is now implemented:
Intel, JMicron, NVIDIA, Promise (also used by AMD/ATI) and SiliconImage.
Such RAID levels are now supported:
RAID0, RAID1, RAID1E, RAID10, SINGLE, CONCAT.
For any all of these RAID levels and metadata formats this class supports
full cycle of volume operations: reading, writing, creation, deletion,
disk removal and insertion, rebuilding, dirty shutdown detection
and resynchronization, bad sector recovery, faulty disks tracking,
hot-spare disks. For Intel and Promise formats there is support multiple
volumes per disk set.
Look graid(8) manual page for additional details.
Co-authored by: imp
Sponsored by: Cisco Systems, Inc. and iXsystems, Inc.