Use 'BOOT_SENSITIVE_INFO=YES' variable to turn them on.
- Use 'uint*_t' instead of 'u_int*_t', correct compilation warnings, and
update copyright while I am here.
memory directly available to loader(8) and friends was limited to 640K on i386.
Those times have passed long time ago and now loader(8) can directly access
up to 4GB of RAM at least theoretically. At the same time, there are several
places where it's assumed that malloc() will only allocate memory within
first megabyte.
Remove that assumption by allocating appropriate bounce buffers for BIOS
calls on stack where necessary.
This allows using memory above first megabyte for heap if necessary.
variables to loader:
hint.smbios.0.enabled "YES" when SMBIOS is detected
hint.smbios.0.bios.vendor BIOS vendor
hint.smbios.0.bios.version BIOS version
hint.smbios.0.bios.reldate BIOS release date
hint.smbios.0.system.maker System manufacturer
hint.smbios.0.system.product System product name
hint.smbios.0.system.version System version number
hint.smbios.0.planar.maker Base board manufacturer
hint.smbios.0.planar.product Base board product name
hint.smbios.0.planar.version Base board version number
hint.smbios.0.chassis.maker Enclosure manufacturer
hint.smbios.0.chassis.version Enclosure version
These strings can be used to detect hardware quirks and to set appropriate
flags. For example, Compaq R3000 series and some HP laptops require
hint.atkbd.0.flags="0x9"
to boot. See amd64/67745 for more detail.
Note: Please do not abuse this feature to resolve general problem when it
can be fixed programmatically. This must be used as a last resort.
PR: kern/81449
Approved by: anholt (mentor)
- do not use PROG for what's not a real C program,
- use sys.mk transformation rules where possible,
- only create the "machine" symlink on AMD64,
- removed MAINTAINER lines in individual makefiles,
- added the LIBSTAND defitinion to <bsd.libnames.mk>,
- somewhat better contents in .depend files.
Tested on: i386, amd64
Prodded by: bde
things over floppy size limits, I can exclude it for release builds or
something like that. Most of the changes are to get the load_elf.c file
into a seperate elf32_ or elf64_ namespace so that you can have two
ELF loaders present at once. Note that for 64 bit kernels, it actually
starts up the kernel already in 64 bit mode with paging enabled. This
is really easy because we have a known minimum feature set.
Of note is that for amd64, we have to pass in the bios int 15 0xe821
memory map because once in long mode, you absolutely cannot make VM86
calls. amd64 does not use 'struct bootinfo' at all. It is a pure loader
metadata startup, just like sparc64 and powerpc. Much of the
infrastructure to support this was adapted from sparc64.
this was quite broken, it never was updated for metadata support.
The a.out kld file support was never really used, as it wasn't necessary.
You could always load elf kld's, even in an a.out kernel.
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
no emulation mode. Unlike other BIOS devices, this device uses 2048 byte
sectors. Also, the bioscd driver does not have to worry about slices
or partitions.
the ACPI module if the system apperars to be ACPI compliant.
This is an initial cut; the load should really be done by Forth support
code, and we should check both the BIOS build date and a blacklist.
capabilities are: AF, AB, cm, ho, me, cd. The code is hidden behind
-DTERM_EMU - should it cause any problems, you can remove this define
to get back the old behaviour.
You'll find some examples how to use it in src/share/examples/bootforth.
Reviewed by: jkh
bootblocks, the kernel shows up as the primary module:
[3:24am]~-100# kldstat
Id Refs Address Size Name
1 1 0xf0100000 ff00000 /kernel
^^^^ oops.. :-)
Based heavily on aout_freebsd.c. Hmm.. There's so much in common that
these could probably be combined and just check the metadata to see which
format it is.
- Discard large amounts of BIOS-related code in favour of the more compact
BTX vm86 interface.
- Build the loader module as ELF, although the resulting object is a.out,
make gensetdefs 32/64-bit sensitive and use a single copy of it.
- Throw away installboot, as it's no longer required.
- Use direct bcopy operations in the i386_copy module, as BTX
maps the first 16M of memory. Check operations against the
detected size of actual memory.
- Implement a new copyin/readin interface for loading modules.
This allows the module loaders to become MI, reducing code duplication.
- Simplify the search for an image activator for the loaded kernel.
- Use the common module management code for all module metadata.
- Add an 'unload' command that throws everything away.
- Move the a.out module loader to MI code, add support for a.out
kld modules.
Submitted by: Alpha changes fixed by Doug Rabson <dfr@freebsd.org>
'three-stage' bootstrap.
There are a number of caveats with the code in its current state:
- The i386 bootstrap only supports booting from a floppy.
- The kernel and kld do not yet know how to deal with the extended
information and module summary passed in.
- PnP-based autodetection and demand loading of modules is not implemented.
- i386 ELF kernel loading is not ready yet.
- The i386 bootstrap is loaded via an ugly blockmap.
On the alpha, both net- and disk-booting (SRM console machines only) is
supported. No blockmaps are used by this code.
Obtained from: Parts from the NetBSD/i386 standalone bootstrap.