mostly meets the guidelines set by the Intel SDM:
1. We use XRSTOR and XSAVE from the same CPL using the same linear
address for the store area
2. Contrary to the recommendations, we cannot zero the FPU save area
for a new thread, since fork semantic requires the copy of the
previous state. This advice seemingly contradicts to the advice
from the item 6.
3. We do use XSAVEOPT in the context switch code only, and the area
for XSAVEOPT already always contains the data saved by XSAVE.
4. We do not modify the save area between XRSTOR, when the area is
loaded into FPU context, and XSAVE. We always spit the fpu context
into save area and start emulation when directly writing into FPU
context.
5. We do not use segmented addressing to access save area, or rather,
always address it using %ds basing.
6. XSAVEOPT can be only executed in the area which was previously
loaded with XRSTOR, since context switch code checks for FPU use by
outgoing thread before saving, and thread which stopped emulation
forcibly get context loaded with XRSTOR.
7. The PCB cannot be paged out while FPU emulation is turned off, since
stack of the executing thread is never swapped out.
The context switch code is patched to issue XSAVEOPT instead of XSAVE
if supported. This approach eliminates one conditional in the context
switch code, which would be needed otherwise.
For user-visible machine context to have proper data, fpugetregs()
checks for unsaved extension blocks and manually copies pristine FPU
state into them, according to the description provided by CPUID leaf
0xd.
MFC after: 1 month
* wrap the RX proc calls in the RX refcount;
* call the DFS checking, fast frames staging and TX rescheduling if
required.
TODO:
* figure out if I can just make "do TX rescheduling" mean "schedule
TX taskqueue" ?
with fresh descriptors, before handling the frames.
Wrap it all in the RX locks.
Since the FIFO is very shallow (16 for HP, 128 for LP) it needs to be
drained and replenished very quickly. Ideally, I'll eventually move this
RX FIFO drain/fill into the interrupt handler, only deferring the actual
frame completion.
I was setting up the RX EDMA buffer to be 4096 bytes rather than the
RX data buffer portion. The hardware was likely getting very confused
and DMAing descriptor portions into places it shouldn't, leading to
memory corruption and occasional panics.
Whilst here, don't bother allocating descriptors for the RX EDMA case.
We don't use those descriptors. Instead, just allocate ath_buf entries.
adds an extra tick to account for the current partial clock tick. However,
that is not appropriate for a repeating timer when the exact tvtohz() value
should be used for subsequent intervals. Fix repeating callouts for
EVFILT_TIMER by subtracting 1 tick from the tvtohz() result similar to the
fix used in realitexpire() for interval timers.
While here, update a few comments to note that if the EVFILT_TIMER code
were to move out of kern_event.c, it should move to kern_time.c (where the
interval timer code it mimics lives) rather than kern_timeout.c.
MFC after: 1 month
... from a user-set persistent limit on the said level.
Allow to set the user-imposed limit below current deepest available level
as the available levels may be dynamically changed by ACPI platform
in both directions.
Allow "Cmax" as an input value for cx_lowest sysctls to mean that there
is not limit and OS can use all available C-states.
Retire global cpu_cx_count as it no longer serves any meaningful
purpose.
Reviewed by: jhb, gianni, sbruno
Tested by: sbruno, Vitaly Magerya <vmagerya@gmail.com>
MFC after: 2 weeks
the linker set of CPU modules. The newbus method, although clever,
had many flaws: it didn't really support multiple SoC, many of the
comments about order were just wrong, and it did a few things far too
late to be useful. delay and cpu_reset now work much earlier in the
boot process.
Renamed the kern.cam.ada.ada_send_ordered sysctl and tunable to
kern.cam.ada.send_ordered, more in line with the other da sysctls/tunables.
Suggested by: kib
kern.cam.da.send_ordered, more in line with the other da sysctls/tunables.
PR: 169765
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: mav
having the CPU device that's a child of atmelarm that does stuff.
o Create a linker_set for the support fucntions for the SoCs.
o Rename soc_data to soc_info.
o Move the delay and reset function pointers to new soc_data struct
o Create elements for all known SoCs
o Add lookup of the SoC we found, and print a warning if it isn't one
we know about.
the upper levels notice. Otherwise we see commands silently failing leading
to data corruption. This mirrors dadone()
Submitted by: Andrew Boyer aboyer@averesystems.com
Reviewed by: scottl@freebsd.org
MFC after: 2 weeks
These probes are most useful when looking into the structures
they provide, which are listed in io.d. For example:
dtrace -n 'io:genunix::start { printf("%d\n", args[0]->bio_bcount); }'
Note that the I/O systems in FreeBSD and Solaris/Illumos are sufficiently
different that there is not a 1:1 mapping from scripts that work
with one to the other.
MFC after: 1 month
PCI:
- Properly handle interrupt fallback from MSIX to MSI to legacy.
The host may not have sufficient resources to support MSIX,
so we must be able to fallback to legacy interrupts.
- Add interface to get the (sub) vendor and device IDs.
- Rename flags to VTPCI_FLAG_* like other VirtIO drivers.
Block:
- No longer allocate vtblk_requests from separate UMA zone.
malloc(9) from M_DEVBUF is sufficient. Assert segment counts
at allocation.
- More verbose error and debug messages.
Network:
- Remove stray write once variable.
Virtqueue:
- Shuffle code around in preparation of converting the mb()s to
the appropriate atomic(9) operations.
- Only walk the descriptor chain when freeing if INVARIANTS is
defined since the result is only KASSERT()ed.
Submitted by: Bryan Venteicher (bryanv@daemoninthecloset.org)