Commit Graph

13 Commits

Author SHA1 Message Date
Marius Strobl
efd4fc3fb3 o Flesh out the generic IEEE 802.3 annex 31B full duplex flow control
support in mii(4):
  - Merge generic flow control advertisement (which can be enabled by
    passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
    NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
    IFM_FLOW isn't implemented as a global option via the "don't care
    mask" but instead as a media specific option this. This has the
    following advantages:
    o allows flow control advertisement with autonegotiation to be
      turned on and off via ifconfig(8) with the default typically
      being off (though MIIF_FORCEPAUSE has been added causing flow
      control to be always advertised, allowing to easily MFC this
      changes for drivers that previously used home-grown support for
      flow control that behaved that way without breaking POLA)
    o allows to deal with PHY drivers where flow control advertisement
      with manual selection doesn't work or at least isn't implemented,
      like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
      by setting MIIF_NOMANPAUSE
    o the available combinations of media options are readily available
      from the `ifconfig -m` output
  - Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
    and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
    these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
  - Change IFM_ETH_MASTER from being implemented as a global option via
    the "don't care mask" to a media specific one as it actually is only
    applicable to IFM_1000_T to date.
  - Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
    actually configure manually selected slave mode (like we also do in
    the PHY specific implementations).
  - Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
    is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
  e1000phy(4) and ip1000phy(4) to use the generic flow control support
  instead of home-grown solutions via IFM_FLAGs. This includes changing
  these PHY drivers and smcphy(4) to no longer unconditionally advertise
  support for flow control but only if the selected media has IFM_FLOW
  set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
  i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
  set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
  and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
  the contents of the BMSR via mii_phy_add_media() instead of hardcoding
  them. The latter approach seems to have developed historically, besides
  causing unnecessary code duplication it was also undesirable because
  brgphy_mii_phy_auto() already based the capability advertisement on the
  contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
  just BCM5701. Apparently this was a misinterpretation of a workaround
  in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
  BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
  this doesn't mean we can't set these as well on other PHYs for manual
  media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
  IFM_1000_T master mode support now is generally available with all PHY
  drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
  not applicable there.

Reviewed by:	yongari (plus additional testing)
Obtained from:	NetBSD (partially), OpenBSD (partially)
MFC after:	2 weeks
2010-11-14 13:26:10 +00:00
Marius Strobl
d7a9ad5688 Consistently always explicitly set IFM_HDX for half-duplex.
Obtained from:	OpenBSD (mostly)
2010-10-03 17:00:57 +00:00
Joel Dahl
1edcf74de7 The NetBSD Foundation has granted permission to remove clause 3 and 4 from
the software.

Obtained from:	NetBSD
2010-03-03 17:55:51 +00:00
Pyun YongHyeon
d612cc5947 IEEE 802.3 Annex 28B.3 explicitly specifies the following relative
priorities of the technologies supported by 802.3 Selector Field
value.

1000BASE-T full duplex
1000BASE-T
100BASE-T2 full duplex
100BASE-TX full duplex
100BASE-T2
100BASE-T4
100BASE-TX
10BASE-T full duplex
10BAST-T

However PHY drivers didn't honor the order such that 100BASE-T4 had
higher priority than 100BASE-TX full duplex. Fix that long standing
bugs such that have PHY drivers choose the highest common denominator
ability.
Fix a bug in dcphy which inadvertently aceepts 100BASE-T4.

PR:	92599
2007-11-16 10:25:36 +00:00
Pyun YongHyeon
41cfbdeb51 If the PHY has 1000BASE-T capability, check to see if a 1000BASE-T speed
was negotiated.

Obtained from:  NetBSD
2006-05-19 03:51:42 +00:00
Marius Strobl
50aa106108 Remove double __FBSDID and move the remaining one into a common place after
the license(s) and before the driver comment (the latter only in drivers not
having __FBSDID at that location).
2004-05-29 18:09:10 +00:00
David E. O'Brien
aad970f1fe Use __FBSDID().
Also some minor style cleanups.
2003-08-24 17:55:58 +00:00
David E. O'Brien
8368cf8f75 Use __FBSDID rather than rcsid[]. 2003-04-03 21:36:33 +00:00
Poul-Henning Kamp
e5fbad8bca Convert exphy and ukphy over to the new code.
exphy is done flying blind, ukphy is tested on one card.
2002-04-29 13:35:31 +00:00
Poul-Henning Kamp
eb95c536ad Remove unneeded #include <sys/kernel.h> 2000-04-29 15:36:14 +00:00
Poul-Henning Kamp
3389ae9350 Remove ~25 unneeded #include <sys/conf.h>
Remove ~60 unneeded #include <sys/malloc.h>
2000-04-19 14:58:28 +00:00
Peter Wemm
c3aac50f28 $Id$ -> $FreeBSD$ 1999-08-28 01:08:13 +00:00
Bill Paul
d00275330d This commit adds support for the NetBSD MII abstraction layer and
MII-compliant PHY drivers. Many 10/100 ethernet NICs available today
either use an MII transceiver or have built-in transceivers that can
be programmed using an MII interface. It makes sense then to separate
this support out into common code instead of duplicating it in all
of the NIC drivers. The mii code also handles all of the media
detection, selection and reporting via the ifmedia interface.

This is basically the same code from NetBSD's /sys/dev/mii, except
it's been adapted to FreeBSD's bus architecture. The advantage to this
is that it automatically allows everything to be turned into a
loadable module. There are some common functions for use in drivers
once an miibus has been attached (mii_mediachg(), mii_pollstat(),
mii_tick()) as well as individual PHY drivers. There is also a
generic driver for all PHYs that aren't handled by a specific driver.
It's possible to do this because all 10/100 PHYs implement the same
general register set in addition to their vendor-specific register
sets, so for the most part you can use one driver for pretty much
any PHY. There are a couple of oddball exceptions though, hence
the need to have specific drivers.

There are two layers: the generic "miibus" layer and the PHY driver
layer. The drivers are child devices of "miibus" and the "miibus" is
a child of a given NIC driver. The "miibus" code and the PHY drivers
can actually be compiled and kldoaded as completely separate modules
or compiled together into one module. For the moment I'm using the
latter approach since the code is relatively small.

Currently there are only three PHY drivers here: the generic driver,
the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding
others later as I convert various NIC drivers to use this code.

I realize that I'm cvs adding this stuff instead of importing it
onto a separate vendor branch, but in my opinion the import approach
doesn't really offer any significant advantage: I'm going to be
maintaining this stuff and writing my own PHY drivers one way or
the other.
1999-08-21 17:40:53 +00:00