the Davicom DM9100 and DM9102 chipsets, including the Jaton Corporation
XPressNet. Datasheet is available from www.davicom8.com.
The DM910x chips are still more tulip clones. The API is reproduced
pretty faithfully, unfortunately the performance is pretty bad. The
transmitter seems to have a lot of problems DMAing multi-fragment
packets. The only way to make it work reliably is to coalesce transmitted
packets into a single contiguous buffer. The Linux driver (written by
Davicom) actually does something similar to this. I can't recomment this
NIC as anything more than a "connectivity solution."
This driver uses newbus and miibus and is supported on both i386
and alpha platforms.
SiS 900 and SiS 7016 PCI fast ethernet chipsets. Full manuals for the
SiS chips can be found at www.sis.com.tw.
This is a fairly simple chipset. The receiver uses a 128-bit multicast
hash table and single perfect entry for the station address. Transmit and
receive DMA and FIFO thresholds are easily tuneable. Documentation is
pretty decent and performance is not bad, even on my crufty 486. This
driver uses newbus and miibus and is supported on both the i386 and
alpha architectures.
PCI fast ethernet controller. Currently, the only card I know that uses
this chip is the D-Link DFE-550TX. (Don't ask me where to buy these: the
only cards I have are samples sent to me by D-Link.)
This driver is the first to make use of the miibus code once I'm sure
it all works together nicely, I'll start converting the other drivers.
The Sundance chip is a clone of the 3Com 3c90x Etherlink XL design
only with its own register layout. Support is provided for ifmedia,
hardware multicast filtering, bridging and promiscuous mode.
MII-compliant PHY drivers. Many 10/100 ethernet NICs available today
either use an MII transceiver or have built-in transceivers that can
be programmed using an MII interface. It makes sense then to separate
this support out into common code instead of duplicating it in all
of the NIC drivers. The mii code also handles all of the media
detection, selection and reporting via the ifmedia interface.
This is basically the same code from NetBSD's /sys/dev/mii, except
it's been adapted to FreeBSD's bus architecture. The advantage to this
is that it automatically allows everything to be turned into a
loadable module. There are some common functions for use in drivers
once an miibus has been attached (mii_mediachg(), mii_pollstat(),
mii_tick()) as well as individual PHY drivers. There is also a
generic driver for all PHYs that aren't handled by a specific driver.
It's possible to do this because all 10/100 PHYs implement the same
general register set in addition to their vendor-specific register
sets, so for the most part you can use one driver for pretty much
any PHY. There are a couple of oddball exceptions though, hence
the need to have specific drivers.
There are two layers: the generic "miibus" layer and the PHY driver
layer. The drivers are child devices of "miibus" and the "miibus" is
a child of a given NIC driver. The "miibus" code and the PHY drivers
can actually be compiled and kldoaded as completely separate modules
or compiled together into one module. For the moment I'm using the
latter approach since the code is relatively small.
Currently there are only three PHY drivers here: the generic driver,
the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding
others later as I convert various NIC drivers to use this code.
I realize that I'm cvs adding this stuff instead of importing it
onto a separate vendor branch, but in my opinion the import approach
doesn't really offer any significant advantage: I'm going to be
maintaining this stuff and writing my own PHY drivers one way or
the other.
a module. Also modified the code to work on FreeBSD/alpha and added
device vr0 to the alpha GENERIC config.
While I was in the neighborhood, I noticed that I was still using
#define NFPX 1 in all of the Makefiles that I'd copied from the fxp
module. I don't really use #define Nfoo X so it didn't matter, but
I decided to customize this correctly anyway.
ethernet controllers based on the AIC-6915 "Starfire" controller chip.
There are single port, dual port and quad port cards, plus one 100baseFX
card. All are 64-bit PCI devices, except one single port model.
The Starfire would be a very nice chip were it not for the fact that
receive buffers have to be longword aligned. This requires buffer
copying in order to achieve proper payload alignment on the alpha.
Payload alignment is enforced on both the alpha and x86 platforms.
The Starfire has several different DMA descriptor formats and transfer
mechanisms. This driver uses frame descriptors for transmission which
can address up to 14 packet fragments, and a single fragment descriptor
for receive. It also uses the producer/consumer model and completion
queues for both transmit and receive. The transmit ring has 128
descriptors and the receive ring has 256.
This driver supports both FreeBSD/i386 and FreeBSD/alpha, and uses newbus
so that it can be compiled as a loadable kernel module. Support for BPF
and hardware multicast filtering is included.
The old VN device broke in -4.x when the definition of B_PAGING
changed. This patch fixes this plus implements additional capabilities.
The new VN device can be backed by a file ( as per normal ), or it can
be directly backed by swap.
Due to dependencies in VM include files (on opt_xxx options) the new
vn device cannot be a module yet. This will be fixed in a later commit.
This commit delimitted by tags {PRE,POST}_MATT_VNDEV
capabilities, but should be a good start... Well, sort of.
It can handle W*ndows 256 color BMP file. (Other color depth probably
won't work.) The size of the image must be 320x200 or less. *sigh*