was used to control code which were conditional on DEVFS' precense
since this avoided the need for large-scale source pollution with
#include "opt_geom.h"
Now that we approach making DEVFS standard, replace these tests
with an #ifdef to facilitate mechanical removal once DEVFS becomes
non-optional.
No functional change by this commit.
NULL. union_whiteout() expects the componentname argument to be non-NULL.
Fixes a NULL dereference panic when an existing union mount becomes the
upper layer of a new union mount.
access its controlling terminal.
In essense, history dictates that any process is allowed to open
/dev/tty for RW, irrespective of credential, because by definition
it is it's own controlling terminal.
Before DEVFS we relied on a hacky half-device thing (kern/tty_tty.c)
which did the magic deep down at device level, which at best was
disgusting from an architectural point of view.
My first shot at this was to use the cloning mechanism to simply
give people the right tty when they ask for /dev/tty, that's why
you get this, slightly counter intuitive result:
syv# ls -l /dev/tty `tty`
crw--w---- 1 u1 tty 5, 0 Jan 13 22:14 /dev/tty
crw--w---- 1 u1 tty 5, 0 Jan 13 22:14 /dev/ttyp0
Trouble is, when user u1 su(1)'s to user u2, he cannot open
/dev/ttyp0 anymore because he doesn't have permission to do so.
The above fix allows him to do that.
The interesting side effect is that one was previously only able
to access the controlling tty by indirection:
date > /dev/tty
but not by name:
date > `tty`
This is now possible, and that feels a lot more like DTRT.
PR: 46635
MFC candidate: could be.
pointer types, and remove a huge number of casts from code using it.
Change struct xfile xf_data to xun_data (ABI is still compatible).
If we need to add a #define for f_data and xf_data we can, but I don't
think it will be necessary. There are no operational changes in this
commit.
Previously all filesystems which relied on specfs to do devices
would have private overrides for vop_std*, so the vop_no* overrides
here had no effect. I overlooked the transitive nature of the vop
vectors when I removed the vop_std* in those filesystems.
Removing the override here restores device node locking to it's
previous modus operandi.
Spotted by: bde
to sort out disk-io from file-io in the vm/buffer/filesystem space.
The intent is to sort VOP_STRATEGY calls into those which operate
on "real" vnodes and those which operate on VCHR vnodes. For
the latter kind, the call will be changed to VOP_SPECSTRATEGY,
possibly conditionally for those places where dual-use happens.
Add a default VOP_SPECSTRATEGY method which will call the normal
VOP_STRATEGY. First time it is called it will print debugging
information. This will only happen if a normal vnode is passed
to VOP_SPECSTRATEGY by mistake.
Add a real VOP_SPECSTRATEGY in specfs, which does what VOP_STRATEGY
does on a VCHR vnode today.
Add a new VOP_STRATEGY method in specfs to catch instances where
the conversion to VOP_SPECSTRATEGY has not yet happened. Handle
the request just like we always did, but first time called print
debugging information.
Apart up to two instances of console messages per boot, this amounts
to a glorified no-op commit.
If you get any of the messages on your console I would very much
like a copy of them mailed to phk@freebsd.org
kern/vfs_defaults.c it is wrong for the individual filesystems to use
the std* functions as that prevents override of the default.
Found by: src/tools/tools/vop_table
here. It manifests itself by sendmail hanging in "fifoow" during
boot on a diskless machine with sendmail disabled.
Giving the sleep a 1sec timout breaks the deadlock, but does not solve
the underlying problem.
XXX comment applied.
busy and we are making progress towards making them not busy. This is
needed because smbfs vnodes reference their parent directory but may
appear after their parent in the mount's vnode list; one pass over the
list is not sufficient in this case.
This stops attempts to unmount idle smbfs mounts failing with EBUSY.
not to the parent's smbnode, which may be freed during the lifetime
of the child if the mount is forcibly unmounted. umount -f should now
work properly (ie. not panic) on smbfs mounts.
unused. Replace it with a dm_mount back-pointer to the struct mount
that the devfs_mount is associated with. Export that pointer to MAC
Framework entry points, where all current policies don't use the
pointer. This permits the SEBSD port of SELinux's FLASK/TE to compile
out-of-the-box on 5.0-CURRENT with full file system labeling support.
Approved by: re (murray)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
checking for "path == NULL" (like ffs) rather than MNT_ROOT. Otherwise
when you try and do an update or mountd does an NFS export, the remount
fails because the code tries to mount a fresh rootfs and gets an EBUSY.
The same bug is in 4.x (which is where I found it).
Sanity check by: mux
has a valid b_iocmd. Valid is any one of BIO_{READ,WRITE,DELETE}.
I have seen at least one case where the bio_cmd field was zero once the
request made it into GEOM. Putting the KASSERT here allows us to spot
the culprit in the backtrace.
terminating zero (it was treated as length missmatch). The mtools create
such slots if the name len is the product of 13 (max number of unicode
chars fitting in directory slot).
MFC after: 1 week
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
check for and/or report I/O errors. The result is that a VFS_SYNC
or VOP_FSYNC called with MNT_WAIT could loop infinitely on ufs in
the presence of a hard error writing a disk sector or in a filesystem
full condition. This patch ensures that I/O errors will always be
checked and returned. This patch also ensures that every call to
VFS_SYNC or VOP_FSYNC with MNT_WAIT set checks for and takes
appropriate action when an error is returned.
Sponsored by: DARPA & NAI Labs.
that works in the new threaded kernel. It was commented out of
the disksort routine earlier this year for the reasons given in
kern/subr_disklabel.c (which is where this code used to reside
before it moved to kern/subr_disk.c):
----------------------------
revision 1.65
date: 2002/04/22 06:53:20; author: phk; state: Exp; lines: +5 -0
Comment out Kirks io-request priority hack until we can do this in a
civilized way which doesn't cause grief.
The problem is that it is not generally safe to cast a "struct bio
*" to a "struct buf *". Things like ccd, vinum, ata-raid and GEOM
constructs bio's which are not entrails of a struct buf.
Also, curthread may or may not have anything to do with the I/O request
at hand.
The correct solution can either be to tag struct bio's with a
priority derived from the requesting threads nice and have disksort
act on this field, this wouldn't address the "silly-seek syndrome"
where two equal processes bang the diskheads from one edge to the
other of the disk repeatedly.
Alternatively, and probably better: a sleep should be introduced
either at the time the I/O is requested or at the time it is completed
where we can be sure to sleep in the right thread.
The sleep also needs to be in constant timeunits, 1/hz can be practicaly
any sub-second size, at high HZ the current code practically doesn't
do anything.
----------------------------
As suggested in this comment, it is no longer located in the disk sort
routine, but rather now resides in spec_strategy where the disk operations
are being queued by the thread that is associated with the process that
is really requesting the I/O. At that point, the disk queues are not
visible, so the I/O for positively niced processes is always slowed
down whether or not there is other activity on the disk.
On the issue of scaling HZ, I believe that the current scheme is
better than using a fixed quantum of time. As machines and I/O
subsystems get faster, the resolution on the clock also rises.
So, ten years from now we will be slowing things down for shorter
periods of time, but the proportional effect on the system will
be about the same as it is today. So, I view this as a feature
rather than a drawback. Hence this patch sticks with using HZ.
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@critter.freebsd.dk>