error in the function hypercall_memfree(), where the wrong arena was being
passed to kmem_free().
Introduce a per-page flag, VPO_KMEM_EXEC, to mark physical pages that are
mapped in kmem with execute permissions. Use this flag to determine which
arena the kmem virtual addresses are returned to.
Eliminate UMA_SLAB_KRWX. The introduction of VPO_KMEM_EXEC makes it
redundant.
Update the nearby comment for UMA_SLAB_KERNEL.
Reviewed by: kib, markj
Discussed with: jeff
Approved by: re (marius)
Differential Revision: https://reviews.freebsd.org/D16845
- Change pcpu zone consumers to use a stride size of PAGE_SIZE.
(defined as UMA_PCPU_ALLOC_SIZE to make future identification easier)
- Allocate page from the correct domain for a given cpu.
- Don't initialize pc_domain to non-zero value if NUMA is not defined
There are some misconceptions surrounding this field. It is the
_VM_ NUMA domain and should only ever correspond to valid domain
values as understood by the VM.
The former slab size of sizeof(struct pcpu) was somewhat arbitrary.
The new value is PAGE_SIZE because that's the smallest granularity
which the VM can allocate a slab for a given domain. If you have
fewer than PAGE_SIZE/8 counters on your system there will be some
memory wasted, but this is obviously something where you want the
cache line to be coming from the correct domain.
Reviewed by: jeff
Sponsored by: Limelight Networks
Differential Revision: https://reviews.freebsd.org/D15933
Most kernel memory that is allocated after boot does not need to be
executable. There are a few exceptions. For example, kernel modules
do need executable memory, but they don't use UMA or malloc(9). The
BPF JIT compiler also needs executable memory and did use malloc(9)
until r317072.
(Note that a side effect of r316767 was that the "small allocation"
path in UMA on amd64 already returned non-executable memory. This
meant that some calls to malloc(9) or the UMA zone(9) allocator could
return executable memory, while others could return non-executable
memory. This change makes the behavior consistent.)
This change makes malloc(9) return non-executable memory unless the new
M_EXEC flag is specified. After this change, the UMA zone(9) allocator
will always return non-executable memory, and a KASSERT will catch
attempts to use the M_EXEC flag to allocate executable memory using
uma_zalloc() or its variants.
Allocations that do need executable memory have various choices. They
may use the M_EXEC flag to malloc(9), or they may use a different VM
interfact to obtain executable pages.
Now that malloc(9) again allows executable allocations, this change also
reverts most of r317072.
PR: 228927
Reviewed by: alc, kib, markj, jhb (previous version)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D15691
Per-cpu zone allocations are very rarely done compared to regular zones.
The intent is to avoid pessimizing the latter case with per-cpu specific
code.
In particular contrary to the claim in r334824, M_ZERO is sometimes being
used for such zones. But the zeroing method is completely different and
braching on it in the fast path for regular zones is a waste of time.
This allows the creation of zones which don't do any caching in front of
the keg. If the zone is a cache zone, this means that UMA will not
attempt any memory allocations when allocating an item from the backend.
This is intended for use after a panic by netdump, but likely has other
applications.
Reviewed by: kib
MFC after: 2 weeks
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D15184
a cache of fully populated buckets. This will be used in a follow-on
commit.
The flag idea was originally from markj.
Reviewed by: markj, kib
Tested by: pho
Sponsored by: Netflix, Dell/EMC Isilon
for UMA startup.
o Introduce another stage of UMA startup, which is entered after
vm_page_startup() finishes. After this stage we don't yet enable buckets,
but we can ask VM for pages. Rename stages to meaningful names while here.
New list of stages: BOOT_COLD, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS,
BOOT_RUNNING.
Enabling page alloc earlier allows us to dramatically reduce number of
boot pages required. What is more important number of zones becomes
consistent across different machines, as no MD allocations are done before
the BOOT_PAGEALLOC stage. Now only UMA internal zones actually need to use
startup_alloc(), however that may change, so vm_page_startup() provides
its need for early zones as argument.
o Introduce uma_startup_count() function, to avoid code duplication. The
functions calculates sizes of zones zone and kegs zone, and calculates how
many pages UMA will need to bootstrap.
It counts not only of zone structures, but also of kegs, slabs and hashes.
o Hide uma_startup_foo() declarations from public file.
o Provide several DIAGNOSTIC printfs on boot_pages usage.
o Bugfix: when calculating zone of zones size use (mp_maxid + 1) instead of
mp_ncpus. Use resulting number not only in the size argument to zone_ctor()
but also as args.size.
Reviewed by: imp, gallatin (earlier version)
Differential Revision: https://reviews.freebsd.org/D14054
domains can be done by the _domain() API variants. UMA also supports a
first-touch policy via the NUMA zone flag.
The slab layer is now segregated by VM domains and is precise. It handles
iteration for round-robin directly. The per-cpu cache layer remains
a mix of domains according to where memory is allocated and freed. Well
behaved clients can achieve perfect locality with no performance penalty.
The direct domain allocation functions have to visit the slab layer and
so require per-zone locks which come at some expense.
Reviewed by: Attilio (a slightly older version)
Tested by: pho
Sponsored by: Netflix, Dell/EMC Isilon
rather than kmem arena size to determine available memory.
Initialize the UMA limit to LONG_MAX to avoid spurious wakeups on boot before
the real limit is set.
PR: 224330 (partial), 224080
Reviewed by: markj, avg
Sponsored by: Netflix / Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D13494
The arena argument to kmem_*() is now only used in an assert. A follow-up
commit will remove the argument altogether before we freeze the API for the
next release.
This replaces the hard limit on kmem size with a soft limit imposed by UMA. When
the soft limit is exceeded we periodically wakeup the UMA reclaim thread to
attempt to shrink KVA. On 32bit architectures this should behave much more
gracefully as we exhaust KVA. On 64bit the limits are likely never hit.
Reviewed by: markj, kib (some objections)
Discussed with: alc
Tested by: pho
Sponsored by: Netflix / Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D13187
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
No functional change intended.
similar to the kernel memory allocator.
This simplifies NUMA allocation because the domain will be known at wait
time and races between failure and sleeping are eliminated. This also
reduces boilerplate code and simplifies callers.
A wait primitive is supplied for uma zones for similar reasons. This
eliminates some non-specific VM_WAIT calls in favor of more explicit
sleeps that may be satisfied without new pages.
Reviewed by: alc, kib, markj
Tested by: pho
Sponsored by: Netflix, Dell/EMC Isilon
This is a wrapper around _Alignof() that sets the alignment for a zone
to the alignment required by a given type. This allows the compiler to
determine the proper alignment rather than having the programmer try to
guess.
Discussed on: arch@
MFC after: 1 week
Sponsored by: DARPA / AFRL
mp_maxid or CPU_FOREACH() as appropriate. This fixes a number of places in
the kernel that assumed CPU IDs are dense in [0, mp_ncpus) and would try,
for example, to run tasks on CPUs that did not exist or to allocate too
few buffers on systems with sparse CPU IDs in which there are holes in the
range and mp_maxid > mp_ncpus. Such circumstances generally occur on
systems with SMT, but on which SMT is disabled. This patch restores system
operation at least on POWER8 systems configured in this way.
There are a number of other places in the kernel with potential problems
in these situations, but where sparse CPU IDs are not currently known
to occur, mostly in the ARM machine-dependent code. These will be fixed
in a follow-up commit after the stable/11 branch.
PR: kern/210106
Reviewed by: jhb
Approved by: re (glebius)
exhausted.
It is possible for a bug in the code (or, theoretically, even unusual
network conditions) to exhaust all possible mbufs or mbuf clusters.
When this occurs, things can grind to a halt fairly quickly. However,
we currently do not call mb_reclaim() unless the entire system is
experiencing a low-memory condition.
While it is best to try to prevent exhaustion of one of the mbuf zones,
it would also be useful to have a mechanism to attempt to recover from
these situations by freeing "expendable" mbufs.
This patch makes two changes:
a) The patch adds a generic API to the UMA zone allocator to set a
function that should be called when an allocation fails because the
zone limit has been reached. Because of the way this function can be
called, it really should do minimal work.
b) The patch uses this API to try to free mbufs when an allocation
fails from one of the mbuf zones because the zone limit has been
reached. The function schedules a callout to run mb_reclaim().
Differential Revision: https://reviews.freebsd.org/D3864
Reviewed by: gnn
Comments by: rrs, glebius
MFC after: 2 weeks
Sponsored by: Juniper Networks
fragmented conditions currently just wakes up the pagedaemon. The
kmem arena is significantly smaller then the total available physical
memory, which means that there are loads where kmem arena space could
be exhausted, while there is a lot of pages available still. The
woken up pagedaemon sees vm_pages_needed != 0, verifies the condition
vm_paging_needed() which is false, clears the pass and returns back to
sleep, not calling neither uma_reclaim() nor lowmem handler.
To handle low kmem arena conditions, create additional pagedaemon
thread which calls uma_reclaim() directly. The thread sleeps on the
dedicated channel and kmem_reclaim() wakes the thread in addition to
the pagedaemon.
Reported and tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
A couple of internal functions used by malloc(9) and uma truncated
a size_t down to an int. This could cause any number of issues
(e.g. indefinite sleeps, memory corruption) if any kernel
subsystem tried to allocate 2GB or more through malloc. zfs would
attempt such an allocation when run on a system with 2TB or more
of RAM.
Note to self: When this is MFCed, sparc64 needs the same fix.
Differential revision: https://reviews.freebsd.org/D2106
Reviewed by: kib
Reported by: Michael Fuckner <michael@fuckner.net>
Tested by: Michael Fuckner <michael@fuckner.net>
MFC after: 2 weeks
through bucket_alloc() to uma_zalloc_arg() and uma_zfree_arg().
- Make some smaller buckets for large zones to further reduce memory
waste.
- Implement uma_zone_reserve(). This holds aside a number of items only
for callers who specify M_USE_RESERVE. buckets will never be filled
from reserve allocations.
Sponsored by: EMC / Isilon Storage Division
- Be more explicit about zone vs keg locking. This functionally changes
almost nothing.
- Add a size parameter to uma_zcache_create() so we can size the buckets.
- Pass the zone to bucket_alloc() so it can modify allocation flags
as appropriate.
- Fix a bug in zone_alloc_bucket() where I missed an address of operator
in a failure case. (Found by pho)
Sponsored by: EMC / Isilon Storage Division
backing memory that is only a container for per-cpu caches of arbitrary
pointer items. These zones have no kegs.
- Convert the regular keg based allocator to use the new import/release
functions.
- Move some stats to be atomics since they would require excessive zone
locking/unlocking with the new import/release paradigm. Make
zone_free_item simpler now that callers can manage more stats.
- Check for these cache-only zones in the public APIs and debugging
code by checking zone_first_keg() against NULL.
Sponsored by: EMC / Isilong Storage Division
These zones have slab size == sizeof(struct pcpu), but request from VM
enough pages to fit (uk_slabsize * mp_ncpus). An item allocated from such
zone would have a separate twin for each CPU in the system, and these twins
are at a distance of sizeof(struct pcpu) from each other. This magic value
of distance would allow us to make some optimizations later.
To address private item from a CPU simple arithmetics should be used:
item = (type *)((char *)base + sizeof(struct pcpu) * curcpu)
These arithmetics are available as zpcpu_get() macro in pcpu.h.
To introduce non-page size slabs a new field had been added to uma_keg
uk_slabsize. This shifted some frequently used fields of uma_keg to the
fourth cache line on amd64. To mitigate this pessimization, uma_keg fields
were a bit rearranged and least frequently used uk_name and uk_link moved
down to the fourth cache line. All other fields, that are dereferenced
frequently fit into first three cache lines.
Sponsored by: Nginx, Inc.
Replace the sub-optimal uma_zone_set_obj() primitive with more modern
uma_zone_reserve_kva(). The new primitive reserves before hand
the necessary KVA space to cater the zone allocations and allocates pages
with ALLOC_NOOBJ. More specifically:
- uma_zone_reserve_kva() does not need an object to cater the backend
allocator.
- uma_zone_reserve_kva() can cater M_WAITOK requests, in order to
serve zones which need to do uma_prealloc() too.
- When possible, uma_zone_reserve_kva() uses directly the direct-mapping
by uma_small_alloc() rather than relying on the KVA / offset
combination.
The removal of the object attribute allows 2 further changes:
1) _vm_object_allocate() becomes static within vm_object.c
2) VM_OBJECT_LOCK_INIT() is removed. This function is replaced by
direct calls to mtx_init() as there is no need to export it anymore
and the calls aren't either homogeneous anymore: there are now small
differences between arguments passed to mtx_init().
Sponsored by: EMC / Isilon storage division
Reviewed by: alc (which also offered almost all the comments)
Tested by: pho, jhb, davide
will be printed once the given zone becomes full and cannot allocate an
item. The warning will not be printed more often than every five minutes.
All UMA warnings can be globally turned off by setting sysctl/tunable
vm.zone_warnings to 0.
Discussed on: arch
Obtained from: WHEEL Systems
MFC after: 2 weeks
excluding other allocations including UMA now entails the addition of
a single flag to kmem_alloc or uma zone create
Reviewed by: alc, avg
MFC after: 2 weeks
rounding. The same value can also be obtained with uma_zone_get_max, but this
change avoids a caller having to make two back-to-back calls.
Sponsored by: FreeBSD Foundation
Reviewed by: gnn, jhb
- Add uma_zone_get_cur which returns the current approximate occupancy of
a zone. This is useful for providing stats via sysctl amongst other things.
Sponsored by: FreeBSD Foundation
Reviewed by: gnn, jhb
MFC after: 2 weeks
to uma_zone_set_max().
The UMA zone limit is not exactly set to the value supplied but
rounded up to completely fill the backing store increment (a page
normally). This can lead to surprising situations where the number
of elements allocated from UMA is higher than the supplied limit
value. The new get function reads back the effective value so that
the supplied limit value can be adjusted to the real limit.
Reviewed by: jeffr
MFC after: 1 week
of times the system was forced to sleep when requesting a new allocation.
Expand the debugger hook, db_show_uma, to display these results as well.
This has proven to be very useful in out of memory situations when
it is not known why systems have become sluggish or fail in odd ways.
Reviewed by: rwatson alc
Approved by: scottl (mentor) peter
Obtained from: Yahoo Inc.
backend kegs so it may source compatible memory from multiple backends.
This is useful for cases such as NUMA or different layouts for the same
memory type.
- Provide a new api for adding new backend kegs to secondary zones.
- Provide a new flag for adjusting the layout of zones to stagger
allocations better across cache lines.
Sponsored by: Nokia
UMA_SLAB_KERNEL for consistency with its sibling UMA_SLAB_KMEM.
(UMA_SLAB_KMAP met its original demise in revision 1.30 of
vm/uma_core.c.) UMA_SLAB_KERNEL is now required by the jumbo frame
allocators. Without it, UMA cannot correctly return pages from the
jumbo frame zones to the VM system because it resets the pages' object
field to NULL instead of the kernel object. In more detail, the jumbo
frame zones are created with the option UMA_ZONE_REFCNT. This causes
UMA to overwrite the pages' object field with the address of the slab.
However, when UMA wants to release these pages, it doesn't know how to
restore the object field, so it sets it to NULL. This change teaches
UMA how to reset the object field to the kernel object.
Crashes reported by: kris
Fix tested by: kris
Fix discussed with: jeff
MFC after: 6 weeks
boot by MD code to indicated detected alignment preference. Rather than
cache alignment being encoded in UMA consumers by defining a global
alignment value of (16 - 1) in UMA_ALIGN_CACHE, UMA_ALIGN_CACHE is now
a special value (-1) that causes UMA to look at registered alignment. If
no preferred alignment has been selected by MD code, a default alignment
of (16 - 1) will be used.
Currently, no hardware platforms specify alignment; architecture
maintainers will need to modify MD startup code to specify an alignment
if desired. This must occur before initialization of UMA so that all UMA
zones pick up the requested alignment.
Reviewed by: jeff, alc
Submitted by: attilio
zone. Cluster allocations fail when this happens. Also processes that may have
blocked on cluster allocations will never be woken up. Thanks to rwatson for
an overview of the issue and pointers to the mbuma paper and his tool to dump
out UMA zones.
Reviewed by: andre@
- Add a printf in swp_pager_meta_build() to warn if the swapzone becomes
exhausted so that there's at least a warning before a box that runs out
of swapzone space before running out of swap space deadlocks.
MFC after: 1 week
Reviwed by: alc
monitoring API, which might or might not be the same as the internal
maximum (currently none).
Export flag information on UMA zones -- in particular, whether or
not this is a secondary zone, and so the keg free count should be
considered in that light.
MFC after: 1 day
statistics via a binary structure stream:
- Add structure 'uma_stream_header', which defines a stream version,
definition of MAXCPUs used in the stream, and the number of zone
records in the stream.
- Add structure 'uma_type_header', which defines the name, alignment,
size, resource allocation limits, current pages allocated, preferred
bucket size, and central zone + keg statistics.
- Add structure 'uma_percpu_stat', which, for each per-CPU cache,
includes the number of allocations and frees, as well as the number
of free items in the cache.
- When the sysctl is queried, return a stream header, followed by a
series of type descriptions, each consisting of a type header
followed by a series of MAXCPUs uma_percpu_stat structures holding
per-CPU allocation information. Typical values of MAXCPU will be
1 (UP compiled kernel) and 16 (SMP compiled kernel).
This query mechanism allows user space monitoring tools to extract
memory allocation statistics in a machine-readable form, and to do so
at a per-CPU granularity, allowing monitoring of allocation patterns
across CPUs in order to better understand the distribution of work and
memory flow over multiple CPUs.
While here, also export the number of UMA zones as a sysctl
vm.uma_count, in order to assist in sizing user swpace buffers to
receive the stream.
A follow-up commit of libmemstat(3), a library to monitor kernel memory
allocation, will occur in the next few days. This change directly
supports converting netstat(1)'s "-mb" mode to using UMA-sourced stats
rather than separately maintained mbuf allocator statistics.
MFC after: 1 week
statement from some files, so re-add it for the moment, until the
related legalese is sorted out. This change affects:
sys/kern/kern_mbuf.c
sys/vm/memguard.c
sys/vm/memguard.h
sys/vm/uma.h
sys/vm/uma_core.c
sys/vm/uma_dbg.c
sys/vm/uma_dbg.h
sys/vm/uma_int.h