support creation times such as UFS2) to the value of the
modification time if the value of the modification time is older
than the current creation time. See utimes(2) for further details.
Sponsored by: DARPA & NAI Labs.
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
It does not help modern compilers, and some may take some hit from it.
(I also found several functions that listed *every* of its 10 local vars with
"register" -- just how many free registers do people think machines have?)
after an EOT-terminated volume. We keep track of the current record
number, and synchronise it with the c_tapea field each time we read
a header. Avoid the use of c_firstrec because some bugs in dump can
cause it to be set incorrectly.
Move the initialisation of some variables to avoid compiler warnings.
volume if we missed some earlier tapes (the user can still enter
'none' later if the tapes are unavailable). Previously with 'x'
restores, we might not ask for all tapes if the tapes are supplied
in reverse order.
Clarify the message that describes what volume should be mounted
first; reverse order is only efficient when extracting a few files.
to multi-volume restores:
- In findinode(), keep a copy of header->c_type so that we don't
exit the do-while loop until we have processed the current header.
Exiting too early leaves curfile.ino set to 0, which confuses
the logic in createfiles(), so multi-volume restores with the
'x' command don't work if you follow the instructions and supply
the tapes in reverse order. This appears to have been broken
by CSRG revision 5.33 tape.c (Oct 1992).
- The logic in getvol() for deciding how many records to skip after
the volume header was confused; sometimes it would skip too few
records and sometimes too many, leading to "resync restore"
warnings and missing files. Skip to the next header only when
the current action is not `USING'. Work around a dump bug that
sets c_count incorrectly in the volume header of the first tape.
Some of the problems here date back to at least 1991.
- Back out revision 1.23. This appeared to avoid warnings about
missing files in the 'rN' verification case, but it made the
problems with the 'x' command worse by stopping getvol() from
even attempting to find the first inode number on the newly
inserted tape. The bug it addressed is fixed by correcting the
skipping logic as described above.
- Save the value of `tpblksread' in case the wrong volume is
supplied, because it is incremented each time we read a volume
header. We already saved `blksread' for the same reson.
time_to_xxx() and xxx_to_time() functions. e.g. _time_to_xxx()
instead of time_to_xxx(), to make it more obvious that these are
stopgap functions & placemarkers and not meant to create a defacto
standard. They will eventually be replaced when a real standard
comes out of committee.
header for the case where sizeof(time_t) != sizeof(int). dumprestore.h
was embedding time_t when it should have been embedding int32_t.
Use time_to_time32() and time32_to_time() to convert between the
protocoll/file-format time and time_t.
corrects cases where restore would spew an infinite stream of
"Changing volumes on pipe input?" messages, or would loop waiting
for a response to the "set owner/mode for '.'" question.
PR: bin/14250
Reviewed by: dwmalone
with a blocksize smaller than the tape block size. The problem
seems to be most easily fixed by changeing where fssize is set.
PR: 5704
Submitted by: David Malone <dwmalone@maths.tcd.ie>
- cleanups,
- whiteout support
- bug fixes (chflags missing on a few file types etc)
The dump/restore folks would want to have a closer look at this, the
change is pretty big.
dirs.c:
From OpenBSD 1.2, 1.3, 1.5, 1.8, 1.10, 1.11, 1.12
1.2:
use unique temporary files; netbsd pr#2544;
lukem@supp.cpr.itg.telecom.com.au
1.3:
updated patch from lukem@supp.cpr.itg.telecom.com.au
to also make -r and -R work again
1.5:
mktemp open & fdopen
1.8:
/tmp// -> /tmp/
1.10:
Fix strncpy usage and correct strncat length field,
from Theo. Also change some occurrence of MAXPATHLEN
with sizeof(foo).
1.11:
does noone know how to use strncat correctly?
1.12:
use mkstemp()
From NetBSD:
Use open rather than create so we can specify
exclusive open mode.
main.c:
From OpenBSD 1.2, 1.5
1.2:
From NetBSD: support $TAPE.
1.5
Set umask to be read only by owner until we set real
file permissions.
tape.c:
From NetBSD:
Use open rather than create so we can specify
exclusive open mode.