on a filesystem if the quota data files reside on a different
filesystem (e.g. the userquota=/somepath,groupquota=/somepath2
options are specified in /etc/fstab to place the quota files
somewhere other than the default location).
Fix quotacheck to only skip accounting if the quota data file
actually resides on the filesystem being checked.
declaring the return value used by the routines in preen.c as a pointer
type, instead of "int", which was causing the pointer to be truncated.
Tested by: marck
Approved by: re (bmah)
in fstab and they are normally mounted as /a/b, if /b is not mounted,
the various quota utilities will incorrectly operate with the quotas on
/a (silently) when operations are attemted on /b.
Sync up all the hasquota() routines between all the different
quota utilities and change it to detect if the file system we are
attempting to perform quota operations on is not currently mounted
and warn the user accordingly.
PR: bin/38918
negative are now ignored by the quota system and that extremely
large ids may make quotacheck run for a very long time.
Also mention that "options QUOTA" is required for the kernel
to provide quota support.
1) Do not account for uids/gids that appear negative to prevent
the creation of 131GB+ quota files. This is the same as the kernel
now determines which files to provide quota accounting for.
Related to PR kern/38156. This should also prevent boots from
hanging if a negative uid appears in the file systems.
2) Do not count system files in the usage counts. These currently are
file system snapshot and quota data files. This is how the kernel
now handles those files.
3) Correctly generate new quota data files if the current files
do not exist or are zero length in size. PR kern/30958.
It should now be possible to newfs / mount / touch quota.{user,group}
and quotaon a file system and have everything work.
4) Change some diagnostics to report the file system and type of
id (uid or gid) that is being reported.
5) Truncate the quota data files if possible, instead of letting
them grow to a big enough size to hold the largest UID/GID on
the system (typically "nobody"). The kernel should now be able to
grow the files as needed without deadlocking the system.
PR: kern/30958, kern/38156
return for getopt() and comparing to -1, ditto with fgetc() and EOF,
and using the kg_nice value from <sys/user.h>
Submitted by: Stefan Farfeleder <stefan@fafoe.narf.at>
Reviewed by: obrien, bde (a while back)
Tested lightly on: ppc, i386, make universe
the old 8-bit fs_old_flags to the new location the first time that the
filesystem is mounted by a new kernel. One of the unused flags in
fs_old_flags is used to indicate that the flags have been moved.
Leave the fs_old_flags word intact so that it will work properly if
used on an old kernel.
Change the fs_sblockloc superblock location field to be in units
of bytes instead of in units of filesystem fragments. The old units
did not work properly when the fragment size exceeeded the superblock
size (8192). Update old fs_sblockloc values at the same time that
the flags are moved.
Suggested by: BOUWSMA Barry <freebsd-misuser@netscum.dyndns.dk>
Sponsored by: DARPA & NAI Labs.
the error "quotacheck: bad inode number 1 to nextinode".
Sponsored by: DARPA & NAI Labs.
Reported-by: Franky <franky@jasna.tarnow.pl> and Matthew Kolb <muk@msu.edu>
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
It does not help modern compilers, and some may take some hit from it.
(I also found several functions that listed *every* of its 10 local vars with
"register" -- just how many free registers do people think machines have?)
Cure the "lets put everything in registers" ailment.
Set WARNS=2
Fix two problems where casting messed up large quotafiles.
PR: 34108
Submitted by: Maxim Katargin <kmv@asplinux.ru>
MFC after: 3 weeks
affect current systems until fsck is modified to use these new
facilities. To try out this change, set the fsck passno to zero
in /etc/fstab to cause the filesystem to be mounted without running
fsck, then run `fsck_ffs -p -B <filesystem>' after the system has
been brought up multiuser to run a background cleanup on <filesystem>.
Note that the <filesystem> in question must have soft updates enabled.
Approved by: rwatson
Obtained from: NetBSD source tree
Second part of the fsck wrappers commit. This commit enables the new fsck
code (removing the fsck/* code and replacing it with the netbsd fsck
wrapper code), and enabling some FFS-based utilities to compile.
Details:
* quotacheck, fsdb required modification to use the fsck_ffs/ code rather
than fsck/ . This might change later since quotacheck requires preen.c
which should exist in fsck/ rather than fsck_ffs/
* src/Makefile has fsck_ffs added to it so it it built as part of the tree
now
* share/doc/smm/03.fsck/ uses the SMM.doc/ stuff from fsck_ffs, not fsck.
I've tested this, and it shouldn't require any changes on your machine.
The fsck wrapper reads /etc/fsck and is command-line-compatible enough
to not require rc changes (well, most changes unless you want to do
anything nifty by specifying the fs types explicityly, read the man page
if you want further details on what it can do.)
This now allows us to support multiple filesystem types during bootup.
Approved by: rwatson
Obtained from: NetBSD-current source tree
The beginnings of the fsck wrappers stuff from NetBSD. This particular commit
brings a newly repo-copied sbin/fsck_ffs/ (from sbin/fsck/) into fsck wrappers
mode.
A quick overview (the code reflects this):
* Documentation changed to reflect fsck_ffs instead of fsck
* Simply acts on a single filesystem, doesn't try to do any multiple filesystem
magic - this is done by the fsck wrappers now
And then specific to fsck_ffs:
* link to /sbin/fsck_4.2bsd and /sbin/fsck_ufs. This is because right now
the filesystem is of type ufs not ffs, and that during autodetection the
labeltype rather than the VFS type is used - this is because when doing
an autodetection of filesystem type in the fsck wrapper program, it does
not have any link between label type (4.2bsd, vinum, etc) and VFS string.
Note that this shouldn't break a build since the required buildworld Makefile
magic and import of the fsck wrapper code into src/sbin/fsck/ will happen
in a seperate commit.